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a b s t r a c t 

Contemporary social media platforms enable users to act as both producers and consumers of content, 

leading to the generation of enormous amounts of data. While this ability is empowering, it is also posing 

many challenges concerning efficient searches for relevant information. Many search approaches have 

been proposed in the literature. However, searching for information on Twitter is particularly challenging 

due to both the inconsistency in writing styles and the high generation rate of spurious and duplicate 

content. The quest for instant and efficient data processing to retrieve relevant information renders many 

existing techniques ineffective when applied to Twitter. 

We present a multilevel approach based on state-of-the-art deep learning methods and a novel scal- 

able windowing approach for pairwise-similarity search (SWAPS) to improve search efficiency. SWAPS 

optimises searches using a strategic balancing criterion to assess the trade-off between accuracy and 

search speed, thereby circumnavigating sequential search problems. Moreover, we propose a deep search 

strategy that establishes a relationship between the status of a tweet and its longevity measured in terms 

of engagement lifespan since posting. Deep search utilises a convolutional neural network for textual n- 

grams features extraction and meta-features from the tweet to train a fully connected network on a vast 

number of tweets. This approach differs from existing ones by recognising the relationship between the 

status of a tweet and its engagement lifespan to ensure a better understanding of the compositional se- 

mantics in tweets. The results highlight interesting symmetrical properties with respect to similarity dis- 

tribution and duration. We evaluate our approach on various benchmark datasets and demonstrate the 

efficacy and applicability of the method. Problems of event detection, clustering and ads, among others, 

can utilise this approach to detect items of interest effectively. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Since the inception of the world wide web, the mode of in-

eraction between the media and the public has shifted from the

raditional 2-step flow [18] to multi-flow [42] where users act as

oth producers and consumers of information. This culminated in

 period of a rapid data growth that is posing computational chal-

enges to tasks 1 where pairwise similarity is central. Various mea-

ures 2 have been taken to improve interaction in terms of navi-

ation and information search. The continuous increase in online

ontent often poses challenges to interact effectively with online

ites. Some measures to address the challenge range from the po-
∗ Corresponding author. 

E-mail addresses: dutsei@edgehill.ac.uk (I. Inuwa-Dutse), Mark.Liptrott@ 

dgehill.ac.uk (M. Liptrott), Yannis.Korkontzelos@edgehill.ac.uk (I. Korkontzelos). 
1 For example, in topic detection and tracking (TDT), clustering, event detection 

r database search. 
2 For example, the early SMART project offers a test-bed to implement and eval- 

ate IR tasks [36] . 
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itioning of URLs at suitable locations to bookmarking information

esources based on semantic similarity. For instance, the work of

ourish and Chalmers [8] examined the underlying semantic rela-

ionship between information-bearing objects in spatial models of

avigation. Heymann et al. [14] leveraged the availability of user-

enerated data, e.g. tags, bookmarks or any form of rich annota-

ion in the web that provides useful data, to improve online search

nd navigation. Enhancement techniques based on heuristics and

areful engineering of features have also been considered in Aggar-

al and Subbian [1] . Information about some implicit factors such

s interests, culture or geolocation as outlined in [28] , have been

hown to improve online information searches [13] . 

Searches on Twitter: by enabling users to annotate contents,

.g. #hashtag , search for information has been greatly simplified

n Twitter. Users can perform a basic search using usernames,

ashtags, trending topics or any meaningful keywords . While these

nnotations have been shown to improve searches [46] , the high

roduction rate of content from influential users often eclipse less

opular content [15] . As the volume of data in the social media

cosystem increases, a variety of options are open for exploration.
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A time-similarity graph showing variations in terms of similarity magnitude in a window. Peaks denote tweets similar to the anchor tweet where the similarity 

decays overtime. 

Table 1 

Notations and descriptions. 

Notation Description 

t a an anchor tweet 

t i other tweets being compared with t a 
w 

z 
k 

a finite collection of z tweets in window k 

t a i 
circle 

set of tweets with high similarity with the anchor tweet 

χ and γ sets of training examples and target labels respectively 

{ x i , y i } n i =0 
∈ R a training instance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t  

r

 

m  

t  

m  

m  

p  

l  

t  

l  

n  

n

1

 

m  

t  

l

 

 

 

 

 

 

 

 

 

 

This study posits that relevant information can be searched ef-

ficiently as a function of time. We propose a multi-level search

method based on deep learning and a novel scalable windowing

approach for pairwise-similarity search (SWAPS) . To illustrate our

proposed approach, consider Fig. 1 that shows the result of a

sequential pairwise-similarity search between an anchor tweet

t a and other tweets t i in a window w of size z . An anchor tweet

t a is the focal point of computing pairwise similarity with other

tweets in a window . Let t a and t i be two tweets posted at times q

and b , respectively. We aim at estimating the time interval b − q

after time q , until a similar tweet t i to t a is found, given that

this relative time difference is found within window k of size z

( w 

z 
k 
). See Table 1 and Section 3 for full notations and definitions

in the study. Our goal is to efficiently identify tweets similar to

the anchor, without searching sequentially. The proposed SWAPS is

based on the premise that if we could predict the high-density area

of the most similar tweets in a window, then we can effectively find a

group of similar tweets to any tweet without searching sequentially .

Firstly, we apply probabilistic reasoning to quantify the degree of

uncertainty in a set of tweets with respect to the approximate

similarity to any tweet within the same collection window and
he time spent for the search. The task proceeds by estimating

he distribution of similarity and relevant statistical quantities in

andom tweets to design an effective search method. 

We then apply a deep learning technique to predict the engage-

ent lifespan of a tweet as a function of its status. This establishes

he relationship between the status of a tweet and its engage-

ent lifespan, which is defined as the duration of wider engage-

ent with the post after being posted. Deep learning methods are

owerful tools to automatically extract lexical-level and sentence-

evel features without resorting to handcrafted rules. To understand

he relationship between the status of a tweet and its engagement

ifespan, lexical features have been extracted using a convolutional

eural networks (convnets) and used in training a fully-connected

eural network using over 60 million pairs of tweets. 

.1. Contributions 

The increasing high generation rate of online content, which

akes searching for relevant items difficult, is the motivating fac-

or behind this study. To enhance searching, we contribute the fol-

owing: 

• We statistically analysed the distribution of similar items across

5 benchmark datasets and two collected for this study (see

Table 2 ). Accordingly, we conducted rigorous statistical tests

and interpretations with respect to population parameters,

i.e., the confidence interval at which to expect adequate similar-

ity in a finite window, the sample mean and variance to provide

useful practical insights. This enabled us to identify the prior

parameters applicable for estimating similarity in related tasks

involving pairwise-similarity, e.g., clustering. 

• We present a novel search algorithm (SWAPS) that balances

the trade-off between search speed and the number of relevant
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Table 2 

Datasets and features (main and meta features comprising the tweet signature). 

Group Pairwise Size Unique Description 

Datasets Diverse tweets (DVT) 35m 300000K consists of random tweets collected using diverse keywords covering many 

domains (based on Ref. [3] ) to introduce a high level of randomness and 

improve the universality of the dataset. 

Subject-based tweets (SBT) 45m 300,000K consists of tweets collected in 2016/2017 related to EU refugee crisis 

Review tweets1 3107 602,400 data about patients’ reviews on specific drugs and related conditions 

Review tweets2 334,140 17,413 contains tweets about health news from major health news agencies 

Review tweets3 400 9336 online and offline collections of customers review about hotel service 

Social Circles 27,549 7059 collection of tweets from social circles in Twitter 

Eur-Lex 12,353,646 62,311 data about EU legal documents 

Features main features – varies consist of various n -gram features (unigram, bigram, trigram, forth-gram and 

fifth-gram) extracted from each tweet using deep learning convnets 

meta features – 6 extracted from the meta-data of a tweet or the user that posted it. Features 

include similarity score, relative posting time, period (e.g., morning, 

afternoon), number of followers, tweet’s favourite count, number of friends 
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discovered items. SWAPS efficiently returns relevant items with

minimal loss of accuracy in comparison with a sequential ap-

proach. 

• We provide a deep learning strategy that leverages the pow-

erful convnets framework to extract relevant features to pre-

dict the engagement lifespan of a tweet. The strategy optimises

search problems by highlighting the meaning and the sym-

metrical property in terms of how similar tweets tend to rally

around tweets of high status. The strategy could be useful for

search and advertisement scheduling since it estimates when

high user engagement is expected. 

• The developed datasets will be made freely available. 

This paper is structured as follows. Section 2 reviews re-

ated work and the subsequent Section 3 introduces the pro-

osed approach and experiments. Section 4 presents the discus-

ion. Section 5 concludes the study and proposes some future

ork. Table 1 shows a summary of the notations utilised in the

aper. 

. Related work 

This section reviews research related to searches for relevant

tems, search enhancement and deep learning methods in Natural

anguage Processing . 

elevancy search. Effective searches for similar items have been of

ajor concern for a long time. The early work of Agrawal et al.

2] proposed an indexing strategy using the Discrete Fourier Trans-

ormation (DFT) that maps sequences from the time domain to the

requency domain and computes similarity using Euclidean dis-

ance. Rafiei and Mendelzon [35] extends the approach in [2] to

dentify similar queries based on sequence matching. These tech-

iques rely on sequence matching to evaluate similarity, which

s limited in capturing rich semantic relationships. Vlachos et al.

41] applied the DFT analysis to discover similar queries by com-

aring query signals from search engine logs. Peng et al. [33] also

pplied DFT to analyse word trajectories in both time and fre-

uency domains. Words exhibiting signal patterns along the trajec-

ories are considered relevant and the higher the signal peak, the

ore relevant the item. The diversity in tweets, due to the non-

tandard style of the text, limits the applicability of this approach

n Twitter. The varying degree of growth and intensity exhibited

y social media content has been investigated in [19,26,43] to re-

eal underlying mechanisms. In Twitter, bursty patterns have been

hown to follow basic statistical distributions, such as the power

aw , and to be mostly triggered by influential users, making other

weets not subscribed to such trends go unnoticed. 
earch enhancement. The growing volume of online content chal-

enges effective filtering for relevant data. This has prompted var-

ous strategies to enhance the process. Early mitigation strategies

nclude bookmarking or collaborative social tagging [14,31,46] and

ptimisation strategies either based on heuristic or careful engi-

eering of features [1,13] . For example, Lagnier et al. [21] investi-

ates how information diffuses within communities, based on inter-

ction dynamism, users’ willingness to transmit and the generated

ontent, to study diffusion patterns and ultimately improve online

earches. 

With respect to design principles and operation, closely re-

ated work to ours can be found in [6,38] . Chen et al. [6] pro-

osed a tweet indexing method (TI) for real-time search based

n keywords. With the growing complexity of social stream and

ynonymous terms, indexing based on the exact match will have

imited coverage since synonymous terms will be overlooked. Our

pproach does not require indexing tweet, but its aggregation

ased on semantic features learned overtime. Sundaram et al.

38] proposed a Locality-Sensitivity Hashing (LSH) approach that

dentifies duplicate or near-duplicate documents. Hashing algo-

ithms are sensitive to variations in input where synonymous

ords may end up in different regions in the hash-table. The LSH

echnique is a useful strategy to avoid sparsity problems; however,

imilar to Chen et al. [6] , the LSH does not account for synony-

ous terms in the documents being compared. Our study utilises

onvnets which serves to account for synonymous terms and vari-

tions. Convnets contextually aggregate words with rich semantic

imilarity with closer distance or proximate in the vector space,

ence more comprehensive. 

eep learning methods. The increasing volume of social media data

equires proportionate handling tools, and prior research works

ave identified deep learning models as most useful. Recently

hose models have revolutionised many research areas from basic

omputations to complex computer vision tasks, such as real object

ecognition in images or videos. Since the pioneering work of Kim

20] on convolutional neural networks (CNN) for text classification,

here has been a surge of implementations and useful best prac-

ice for various NLP tasks [45] . Sutskever et al. [39] applied deep

earning techniques, in particular, Long short-term memory (LSTM)

nits, for textual sequence mapping, applicable to automatic trans-

ation tasks. Deep learning has been successfully applied to nu-

erous extraction tasks [7,24,44] , due to its capability to auto-

atically extract lexical-level and sentence-level features without

esorting to handcrafted methods or cumbersome traditional NLP

ools. Mencia and Fürnkranz [29] and Bhatia et al. [4] applied the

raditional multilayer perceptron and deep learning for multi-label

lassification, respectively. Motivated by the success of deep learn-

ng in related areas, this study leverages it to efficiently search for
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Fig. 2. An example of how each tweet in a finite collection of tweets compares with 

others. Each tweet is a potential anchor, and for each designated anchor, t a i , in the 

window, the set of tweets whose similarity is higher than a threshold τ constitutes 

the anchor’s circle given by t a i 
circle 

. Note that j ∈ t a i 
circle 

refers to a tweet with a high 

degree of similarity with the anchor tweet which distinguishes it from other tweets 

t i that could be similar or dissimilar to the anchor. 
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relevant information on Twitter, thereby contributing to search en-

hancement. 

3. Proposed approach 

This section describes our multi-level approach based on the

proposed SWAPS algorithm to speed-up searching and deep learning

to predict engagement lifespan . We begin by quantifying the uncer-

tainties associated with the problem using a probabilistic inference

toolkit 3 , describing SWAPS and finally introducing the deep learn-

ing strategy. 

Notations and definitions. For the prediction task, χ and γ de-

note sets of training examples and target labels respectively and

{ x i , y i } n i =0 
∈ R denotes a training instance. The input, χ , consists of

both main and meta features (see Table 2 ). For any anchor tweet

t a , its circle consists of most similar tweets to it denoted by t a 
circle 

.

For a given window, each anchor tweet is represented as a list of

tuples containing the similarity score ( φ) between the anchor tweet

and any other tweet t i , and the relative posting time p = p j − p a in

seconds 4 . Thus, for each anchor tweet 

 

a i 
circle 

= [ φ((t a i , t j ) , p)] n j= i +1 

where n = | φ(t a i , t j ) ≥ τ | and τ is a predefined threshold 

5 . 

Definition. Similar tweets refer to any pair of tweets ( t a , t i ), whose

similarity magnitude φ is greater than a predefined threshold τ .

We denote φ( t a , t i ) ≥ τ as a random variable that defines a similar-

ity between the anchor tweet t a and any other tweet t i , otherwise

dissimilarity (i.e. φ( t a , t i ) < τ ); see Fig. 2 for a visual description. 

Computing pairwise similarity on large document collections

is a task common to a variety of problems. Similarity metrics

are broadly categorise as sequence matching and linear (word-

embedding) . Sequence matching computes similarity by matching

co-occurrence of lexical sequences in documents using metrics

such as Cosine and Dice [2] . These metrics suffer a setback if ap-

ply to tweets due to the sparsity of co-occurring terms [23] . Sim-

ilarities based on word-embedding can reveal the semantic simi-

larities since it does not rely on matching co-concurrence but the

contextual meaning of terms. Common examples are doc2vec and
3 We utilise the PYMC3 probabilistic programming toolkit developed in Python 

[37] . 
4 p = p j − p a defines the time difference between the anchor tweet and a closely 

related tweet only, j . Similarly, p = p i − p a defines the time difference between the 

anchor tweet and any other tweet, i . 
5 For all experiments in this paper, τ = 0 . 5 , i.e. two tweets are considered similar 

(1) if φ ≥ 0.5, otherwise dissimilar (0). 

t  

e  

p  

p  

t  

w  

t  

c  
ord2vec [30] . Our approach computes similarity based on word

mbedding . 

.1. Dataset description 

In this section, we describe the datasets and the corresponding

reprocessing technique given in Section 3.4.1 . We utilise two cat-

gories of data: collected data (collected mainly for the study) and

ublic data (available from public data repositories). Majority of the

atasets consist of collections of short messages (known as tweets)

btained from Twitter. 

.1.1. Collected datasets 

This data category is mainly collected for the study and con-

ist of: subject-based tweets (SBT) and diverse tweets (DVT) datasets.

oth the SBT and DVT consist of tweets collected from Twitter us-

ng a collection crawler that returns relevant information based on

eywords . Keywords play a crucial role in retrieving specific docu-

ents from a large corpora [25] . Our collection approach is based

n ad-hoc retrieval method, which involves the use of descriptive

eywords to search for relevant documents [27] . The SBT consists

f a collection of tweets posted during the height of the EU refugee

risis (2016/2017) . Noting the bias that may arise due to the seem-

ngly black box sampling strategy by Twitter in returning queried

ocuments [40] , we utilise diverse keywords covering many as-

ects of the subject. Sample collection keywords include refugee,

igrants, refugee crisis, EU refugees, refugees & (refugee/migrants);

igrants & (refugees/migrants); crisis & (refugees/migrants) . The DVT

onsists of a random collection of tweets spanning diverse topics

f discussion on Twitter based on Ref. [3] . This is to mitigate simi-

arity bias likely to be caused by focusing on the specific discussion

opic and to maximise the diversity and randomness in the data. 

.1.2. Public datasets 

In addition to the data purposely collected for the study, we use

he following datasets, which can be downloaded from public data

epositories. 

Review tweets . These are collections of reviews posted by users

n Twitter. Review tweets1 [11] consists of reviews about drugs and

eview tweets2 [17] contains a collection of tweets about health-

elated issues from major health news agencies. Review tweets3

5] consist of customers’ reviews about services offered by hotels.

t is expected these datasets will have a high degree of similarities,

hich will be useful for evaluation. 

Eur-Lex dataset [29] . This is the only non-tweet dataset in the

tudy. We use the Eur-lex dataset which does not incorporate tem-

oral information to demonstrate the operation of SWAPS beyond

weets. 

Social circles dataset [22] . This dataset consists of 81,306 users

rawled from Twitter. Based on the IDs of the users, we retrieved

heir tweets and other relevant information for the study. Because

his dataset is from users with affiliations to specific online com-

unities [22] , we expect a higher degree of similarity in their

weets. We extracted 7059 unique users for this experiment. 

.2. Uncertainty quantification 

Fig. 3 shows a hypothetical finite window k of size z ( w 

z 
k 
) de-

icting how an anchor tweet t a compares with all other tweets in

he window. Conventionally, t a is sequentially compared with ev-

ry other tweet t i in the window, and this approach certainly im-

edes the efficiency of the process if the search space is vast. Our

reliminary analysis, shown in Fig. 1 , suggests that a tweet tends

o have a set of m most similar tweets known as circle , distributed

ithin a finite window. The goal is to compute the probability dis-

ribution of similar vs. dissimilar tweets in relation to a random an-

hor tweet in any given window. Accordingly, we conduct rigorous
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Fig. 3. A hypothetical finite window of random tweets depicting a random anchor 

tweet, t a , posted at time p , its m similar tweets and the time distance d between a 

similar tweet t sim and the anchor tweet t a . 
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tatistical tests and interpretations with respect to the population

arameter (i.e., the confidence interval for true similarity distribu-

ion in a finitely sized window ), the confidence interval, sample mean

nd variance to gain useful insights applicable in practice. We ex-

eriment using a diverse collection of tweets and various window

izes. In other words, we take a bootstrap sample from the corpus

opulation, that is useful in measuring the variability of the simi-

arity distribution and their temporal behaviour in the windows. 

.2.1. Distribution of similar tweets in a window 

The circle size m , ( m = | t a 
circle 

∈ w 

z 
k 
| ), of an anchor tweet is con-

idered as a random variable θ such that φ(t a , t i ) ∈ [0 , 1] > τ ; i =
 , 2 , 3 , . . . , z. In line with related studies [10,12,23] , we apply prob-

bilistic generative models to estimate θ in each window. We be-
ig. 4. The trace or results from random samples drawn from the posterior distribution base

 and y axes, respectively, denote the similarity value and frequency in the window. Th

nd degree of stability in the samples as a function of window size. We can observe a d

00, shows a high level of instability and low similarity (b) the instability is still eviden

nd increased similarity (d) finally, a window size of 2500 shows no major improvement 

andom samples. 
in with Bernoulli: 

(t a , t i ) Bern (θ ) = Bern (1 , θ ) 

uch that 

p(φ(t a , t i ) = 1 | θ ) = θ

nd 

p(φ(t a , t i ) = 0 | θ ) = 1 − θ ; 0 ≤ θ < 1 

he respective mean and variance are given by E[ φ(t a , t i )] = θ and

 ar[ φ(t a , t i )] = θ (1 − θ ) . For a finite window, the estimation fol-

ows a Binomial distribution where m denotes φ(t a , t i ) = 1 , ∀ i ∈ m

nd the sum of possible ways to obtain m given by: 

in (m | z, θ ) = 

(
z 

m 

)
θm (1 − θ ) z−m 

or each window, we repeatedly compute the number of ways 
(

z 
m 

)
o select similar tweets (if any) to the anchor tweet on different

amples by varying the window sizes. This approach enables us to

uantify the required number of trials in a window, the window

ize required for finding enough similar tweets and the associated

ncertainties regarding the variability of t a 
circle 

∈ w 

z 
k 
. Fig. 4 shows

esults from trials that utilised various window sizes. Using a rela-

ively small window size of 200 tweets shows high instability and

any dissimilar tweets. Increasing the window size to about 500

weets provides more stability and increases the number of similar

weets. The distribution remains virtually unchanged with a win-

ow size of 1500 and 2500 random samples. 
d on the prior . The different colours in the line denote similarity values of samples; 

e corresponding sub-figures in the right column report the similarity magnitudes 

rop in the perturbations as the window size is increased: (a) a small window size, 

t with a window size of 500 (c) a window size of 1500 shows moderate stability 

over (c). The distribution remains virtually unchanged with a window size of 1500 
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Fig. 5. The posterior distribution and the quantification of uncertainties based on the observed data. Relevant statistical quantities about the data such as sample mean, 

median, the highest posterior density (HPD) and the region of practical equivalence (ROPE) can be defined. HPD quantifies the belief that on the distribution corresponding to 

our expectation and the observed data, 95% will be dissimilar. The ROPE is useful in deciding whether to keep increasing the window size or not by using values within the 

desired threshold. For instance, The red ROPE along the black HPD bar in (a) at the threshold value and (b) above the threshold value corresponds to a tunable region where 

various values can be evaluated, e.g., 5.5–6.5. 

Fig. 6. A pairplot to explore the relationship between mean score, window size and relative posting time as a grid of axes. Each variable in the plot is shared in the y-axis 

across a single row and the x-axis is the same along the column. A reasonable amount of similar pairs are obtained using a window size of about 40 0–50 0 tweets. More 

similar tweets can be obtained by increasing the window size to the region of 80 0–10 0 0 tweets. 
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The information in Fig. 5 allows the computation of statistical

quantities about the data such as the sample mean , the median , the

highest posterior density (HPD) and the region of practical equiva-

lence (ROPE) . In the figure, HPD and ROPE are represented as a long

black bar and red bar respectively. The HPD quantifies the proba-

bility that there is a 95% dissimilarity between the expected and

the actual data distribution 

6 . This is crucial in deciding whether to
increase the window size or not. 

6 The computation can be conditioned on the time of collection and the popular- 

ity of the content since influential users on Twitter attract more attention and drive 

trending topics 

 

s  

f  

e  
Fig. 6 shows a pair-plot of the mean similarity and mean dura-

ion as a function of various window sizes. Many similar tweets in

he range of 50 0–80 0 can be observed and the duration or relative

osting time spans to −15, which suggests that there exist tweets

imilar to the anchor tweet before its posting time. 

.3. SWAPS algorithm 

Informed by the quantification of uncertainty and the related

tatistical quantities, we present the Scalable Windowing Approach

or Pairwise-similarity Search (SWAPS) algorithm. SWAPS utilises the

xpected mean, E [ φ]( mean ), and the variance, var , as baseline
base base 
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Table 3 

Execution performance across multiple datasets. SC and MC: execution based on 

single core and multiple cores, respectively. Only MC is available for datasets with 

a large pairwise size. 

Dataset Sequential SWAPS 

Execution time(s) μsim Execution time(s) μsim 

SC MC SC MC 

DVT – 5640 0.26 – 2340 0.21 

SBT – 4400 0.33 – 1800 0.28 

Review tweets1 425 252 0.63 145 95 0.47 

Review tweets2 – 1572 0.85 19975 761 0.64 

Review tweets3 5.0 5.0 0.71 12 5 0.59 

Eur-Lex – 1325 0.60 – 348 0.46 

Social Circles – 205 0.38 – 31 0.34 

b  

t  

e  

v  
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t
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o  
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m  

a  

w  
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s  

s  

t  

r  
arameters to regulate its operation. These quantities can be used

o evaluate and inform assumptions, such as the actual mean simi-

arity in an interval [ p − q ] ∈ w express as μsim 

([ φ] 
q 
p ) . This quantity

hould be at least equal or greater than the mean base such that 

sim 

([ φ] q p ) − E[ φ] ≥ 0 

he mean value is useful in taking longer search steps, and the

ariance informs how the distribution changes at shorter intervals.

 significant deviation in these quantities heralds a change in the

imilarity distribution. For instance, the undulations in Fig. 1 are

elated to changes in the mean and variance and are utilised by the

lgorithm to decide when and how to regulate the search process.

onsequently, a control mechanism consisting of catalysing factor

 (or c-factor ) and jump index (or j-index ϕ( t j )) is proposed to ef-

ectively guide the process. The c-factor is related reciprocally with

he mean similarity. The j-index accepts the c-factor , μsim 

([ φ] 
q 
p ) ,

 w 

z 
k 
| and the current position of the anchor tweet to compute the

ext arbitrary starting point j . These quantities are related as fol-

ows: 

sim 

([ φ] q p ) = 

1 

| w 

z 
k 
| 

q ∑ 

p 

φ(t i , t j ) ≥ τ t i , t j ∈ p − q 

 = 

1 

μsim 

([ φ] q p ) 

(t j ) = c + 

| w 

z 
k 
| 

p − q × μsim 

([ φ] q p ) 
ϕ(t j ) < | w 

z 
k | 

The j-index always returns an integer value less than the win-

ow size, which corresponds to the position where searching

hould continue. The search limit (l) , a user-define fractional value,

efines the point to invoke SWAPS after n sequential search steps.

ur implementation uses l = 1 / 4 , i.e., 1/4 of the space has been

earched before SWAPS is invoked. An interesting property of both

 and ϕ( t j ) is their diminishing behaviour, as illustrated in Fig. 7 , as

he mean similarity increases over time. SWAPS can accommodate

ny standard similarity metric, such as Cosine similarity , or a cus-

om metric to suit the application requirements. For instance, the

erformance of the Cosine similarity, which is based on terms co-

ccurrence, can be enhanced by incorporating the length of terms,
ig. 7. The behaviour of SWAPS parameters in regulating search speed: as the mean 

imilarity improves, the effect of the c-factor (labelled as + at the bottom middle) is 

iminishing, hence shorter or no j-index values apply. 

l  

t  

i  

1  

r  

t

A  

t

 

ased on the observation that terms that consist of many charac-

ers has been shown to be informative [34] . However, a more pow-

rful approach is to compute similarity based on word embedding

ectors [30] . Our analysis results are based on computing Cosine

imilarity ( Section 3 ) between the embedding vectors of a pair of

weets. 

.3.1. SWAPS complexity 

Both sequential search and SWAPS are iterative algorithms, and

peration-wise they are similar since activities such as looping

ver items are common in both, but the items to be compared are

ifferent. For a finite window w 

z 
k 
, the total number of comparisons

o be made by the sequential process is 
∑ z−2 

i =1 z − i and by SWAPS

pproximately 1 
3 

∑ z−2 
i =1 z − i ; i � = z. Both methods leverage the sym-

etry in dot multiplication for computations. In SWAPS, there is

pproximately 1/3 chance of invoking a control mechanism. With a

indow size of just 350 tweets, there are 30,625 total comparisons

o be made using sequential searches and roughly 10,208 compar-

sons using SWAPS. Table 3 summarises the execution time, mea-

ured in seconds, for both methods on various datasets. For the

equential approach in window w 

z 
k 
, the increment is linear and

he first m anchors will cause z − 1 , z − 2 , z − 3 , z − m comparisons,

espectively, with complexity of O ( z 2 ). The execution of the outer

oop in SWAPS, shown in Algorithm 1 , is dependent upon the con-

rol mechanism that decides the next starting position. Consider-

ng a minimum jump, based on the mean similarity of 0.2 after

70 pairs have been searched, c-factor evaluates to 5 and the cor-

esponding j-index to 15. Proceeding at a steady pace for m itera-

ions, the complexity is bounded by O ( z ( logz )). 

lgorithm 1 SWAPS : Given a set of timestamped tweets

 i , . . . , t z−1 ∈ w 

z 
k 
) posted at time p ∈ [ p k , p m 

] from corpus D : 

1: Initialisation: anchor tweet t a , buddy tweet t i , baselines

(mean base , v ar base ) , search limit l 

2: while t i index < z − 1 do 

3: ∀ t a , t i ∈ w 

z 
k 

compute φ(t a , t i ) ;μsim 

; v ar sim 

4: if t a index ≥ l × | w 

z 
k 
| and μsim 

< mean base then 

5: compute c and ϕ(t j ) 

6: update anchor: t a index ← ϕ(t j ) 

7: update buddy: t i index ← ϕ(t j ) + 1 

8: else 

9: t a ← t a 
10: mean base ← μsim 

; if mean base < μsim 

11: v ar base ← v ar sim 

; if v ar base < v ar sim 

12: continue 

13: end if 

14: t a ← t a +1 

15: t i ← t i +1 

16: end while 
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Fig. 8. Data cleaning pipeline. The SPD cleaning step involves the use of a prediction 

model trained on numerous features related to tweets. 
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3.4. Status of a tweet and engagement lifespan 

The motivation behind the use of deep learning is to strategi-

cally optimise searches by exploring the idea that relevant infor-

mation can be efficiently searched as a function of the engagement

lifespan of tweets. To learn the association between the status of

a tweet and its engagement lifespan , over 60 million tweets have

been represented based on their meta-features and used to train

a regression model. The goal of the regression model is to predict

time interval at which a given anchor tweet will attract significant

attraction. The predicted time is not absolute but an approximate

time range, in which relevant tweets to the anchor tweet are ex-

pected to be posted. 

3.4.1. Data cleaning and preprocessing 

Online social media attract all sort of information from diverse

users. In terms of cleaning, social media data is particularly chal-

lenging to process due to the prevalence of a personalised form

of writing and lack of structure emanating from a lack of stan-

dard writing styles [32] . Tweets are generally noisy and consti-

tute a substantial proportion of irrelevant or spam content which

could undermine analysis result. As an initial preprocessing task,

we utilise a spam filtering technique ( SPD ) proposed in [16] to get

rid of irrelevant content from the data. The SPD approach makes

it possible to incorporate detection mechanism in the data col-

lection pipeline or apply the technique to an existing data to re-

move tweets with a high probability of being spam. To enable

the use of SPD, we collect all the features such as network fea-

tures and textual features required for the SPD detection, which

returns the likelihood of spam or non-spam. Fig. 8 shows the

data cleaning pipeline. The filtered tweets are then normalised

by converting to lower case and removing stopwords to obtain

shingles . Shingles are the set of attributes for similarity com-

parisons and are obtained after the removal of URLs, #hashtags,

@mentions 7 . 

3.4.2. Feature extraction 

For training and evaluation purposes, Fig. 9 shows the feature

extraction and the training pipeline utilised in the study. Two sets of

features have been used: main features , i.e., features extracted from

raw tweets using 1-d multi-channel convolutional neural network

( CNN or convnet based on Kim [20] ), and meta features , which are

fed to the fully connected neural network segment in the figure.

Convnet automatically extracts relevant features in a tweet as n-

grams at various lexical-levels. Table 2 provides additional details

about the features. 

The filter in each channel of Fig. 9 is initialised with the em-

bedding of the term as a weight vector 8 . We adjust the region

size of filters to have the same width as the dimensionality of

the word vector, to preserve the inherent sequential structure in

the data [45] . The fully connected neural network (FCN), i.e. seg-

ment (h) in Fig. 9 , accepts the main features, consisting of the
7 These sequences were removed so that the approach generalises well on text 

other than tweets, such as the Eur-Lex data (see Table 2 ). 
8 The embedding matrix E is trained on the SBT and DVT datasets. 

t  

d

ntegrated best features from each channel defining a high-level

epresentation of a tweet, and the corresponding meta-features

f the tweet for training. As far as the variations in the data

cale, with respect to meta-features, are concerned, each fea-

ure used for training the deep learning model is proportion-

lly scaled by subtracting the mean and dividing by the standard

eviation. Finally, the data is proportionally split into train and

est sets. 

.4.3. Prediction 

We conducted a series of experiments on various datasets,

hown in Table 2 , to learn the behaviour of as many different

weets as possible at various times. 

The training objective is to minimise crucial loss functions:

ean-squared error (MSE) , and mean absolute error (MAE) . These are

seful metrics to assess the efficacy of the model. Fig. 10 , which

tilises the MSE loss function , shows the experimentation results

sing the SBT and DVT datasets. 

SE. This is a widely used loss function in regression problems,

hich is expressed as the mean of sum of the squared distances

etween the target ( y ) and the predicted ( ̂  y ) values: 

se = 

1 

n 

n ∑ 

i =1 

(y i − ˆ y i ) 
2 

he aim is to minimise the distance or error between the true

alue and the predicted value. 

AE. In addition to the MSE which takes into account the direc-

ion of the errors, we apply the MAE which evaluates the mean

agnitude of the errors in the prediction task. It is based on the

bsolute difference between the target ( y ) and the predicted ( ̂  y )

alues: 

ae = 

∑ n 
i =1 | y i − ˆ y i | 

n 

In Fig. 10 (d), the target values appear as a straight line due

o proximity in posting time between the tweets which were col-

ected from the diverse topic of discussion. With an average 100 m

aily users contributing about 500 m content 9 , the amount of

weets is enormous. Within a second or two, thousands of tweets

re being produced, and because the collection keywords span var-

ous discussion topics on Twitter, many unrelated tweets are pro-

uced. We reduce the size, as shown in the appendix (Fig. B.15) to

ake the pattern more visible. 

The diverse datasets, collected using keywords spanning broad

ubjects such as sports, entertainment, politics, education, news , con-

ist of a multitude of disparate tweets from these broad cate-

ories posted within a short period with close proximity. Thus,

he probability of picking a tweet with high similarity with

ther tweets in the DVT is evidently low. The diverse dataset is

ctually not the ideal practical use-case since real information

earch often starts with some high-level keywords specific to the

earch topic. The rationale of using the DVT is to compare with

he ideal use-case that employs specific searching criteria using

he SBT , which shows a better performance with potentials of

mprovement. 

.4.4. Evaluation 

We conducted three forms of analysis: (1) several quantitative

valuations on various test datasets (2) a comparative analysis be-

ween SWAPS and sequential search, and (3) an evaluation on in-

ependent benchmark datasets. 
9 See https://www.omnicoreagency.com/twitter-statistics/ . 

https://www.omnicoreagency.com/twitter-statistics/
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Fig. 9. A convnet and a fully connected neural network consisting of numerous dense layers. The framework uses main and meta features to learn the relationship between 

the status of a tweet and its engagement lifespan. Each channel in the architecture consists of (a) the length of the input sequence (b) an embedding layer (c) an 1-d convnet 

layer with 32 filters and a kernel size (equivalent to the n-gram) (e) a max pooling layer to select best feature from (d) the feature map and finally (f) integrates the output 

which combines with meta features to train (h) a fully connected neural network. 

Fig. 10. Evaluation results on SBT and DVT datasets. Sub-figures (a) and (c) depict the MSE and MAE, and sub-figures (b) and (d) compare the actual target to predicted 

targets. There is a shorter time interval in the DVT dataset, which can be explained due to the random collection of topics discussed simultaneously in the data and the 

predictions are mostly behind the target. See Table A.4 for some examples. There is a longer duration in the SBT, which is generated using a small set of specific keywords 

to filter relevant content but performs better. 
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Fig. 11. Proportions of mean similarities in searches conducted by Sequential and SWAPS methods. As expected, the Sequential method returns higher proportion of similarity 

than SWAPS but at the expense of longer time (see Table 3 ). The difference in the proportion between the two is marginal, which can be compromised in favour of speed. 
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10 Leveraging the concept of a light cone from Physics and how ripples are created 

in a pond, in proportion to the surface area. 
In addition to the SBT and DVT, we utilised various datasets

(consisting of tweets of various sizes and non-tweet content, see

Table 2 ) to search for similarities using both Sequential search

and SWAPS . Of interest are the execution times and the num-

ber of similar pairs or the mean similarity for both meth-

ods. As a form of greedy search, the Sequential method al-

ways returns a higher proportion of similar items, albeit at

the expense of longer execution time. SWAPS, on the other

hand, returns a relatively high proportion of similar items more

efficiently. 

Based on Table 3 and Fig. 11 , the difference between the items

found by the two methods is marginal in SBT and DVT in com-

parison with other datasets. This is desirable and is probably be-

cause the other datasets have been collected and curated for a

specific purpose. For example, instances in the review datasets ex-

hibit high similarities among them since they are all reviews of

products of the same type and, thus, they mostly contain sim-

ilar terms. Noting the difference in execution time between Se-

quential and SWAPS , it could be argued that the difference is

not significant enough to warrant compromising accuracy. Con-

sidering the window sizes (maximum of 10 0 0 tweets only, see

Fig. 6 ), the practical advantage of SWAPS would be appreci-

ated when working with larger window size (as demonstrated in

Section 3.3.1 ). 

Fig. 11 shows relative proportions of most similar items found

by Sequential and SWAPS methods. The results are the aggregation

of the different similarity scores in a window of tweets of vari-

able sizes. Fig. 6 shows the different window sizes. The result in

Fig. 11 only captures samples from the window sizes we consider

to be adequate (from 100 up to 500) for illustration. The SWAPS

achieves higher counts at a few instances, but the overall count is

in favour of the Sequential method. Moreover, SWAPS is invoked

at a specific point when certain criteria are met (see Section 3.3 );

until then, the operation is sequential. 

4. Tweet’s status and choice of anchor tweet 

We observe that the circle size for anchor tweets differs based

on the relevance of the tweet in attracting attention. To demon-
trate this, we apply the concept of light cone 10 and ripples.

ig. 12 (a) intuitively illustrates the level of interest generated by

n anchor tweet. The similarity of a tweet to other tweets in-

reases as the engagement lifespan increases. Tweets with high

ngagement tend to have many features in common (e.g. high in-

egree or followership). These features are considered responsible

or higher engagement and as a proxy for online social status. It

ollows that the category of tweets with high engagement level

ill exhibit a certain pattern of similarity by having many fea-

ures in common. Sustaining a high engagement lifespan, i.e. more

ipples in Fig. 12 (a), is explained by a latent variable we refer to

he ability of tweet’s relevance which is the relevance of a tweet

ased on a combination of features defining its status. This phe-

omenon is investigated by applying the idea of item response the-

ry [9] . With respect to this study, item response theory (IRT) mea-

ures the influence of an anchor tweet in attracting more tweets

.e., is the tweet from a user who has a large following or who tends

o have a low favourite counts? Accordingly, we apply the Rasch

odel to assess the relevance of an anchor tweet, as shown in

ig. 12 (b). 

.1. Engagement level and maximisation 

With a growing data stream and high demand for instant pro-

essing where efficiency is crucial, the sequential method is not

nly time consuming, but computationally expensive. The ultimate

oal of the prediction model is to estimate the expected time

t which to anticipate a high level of engagement with a tweet.

he level of engagement can be discerned since the longer the

weet can attract attention (more circle members ) the more en-

aged is the tweet. In Fig. 12 (a), a more extended period and

 large number of circle members are considered high engage-

ent. We sample some tweets with a high number of circles and

bserve the exact period or time of the day (see Table A.4 for

ome examples). A substantial number of tweets appear to be pro-

uced at a definite period, mostly toward the end of the evening.
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Fig. 12. Sub-figure (a) shows how anchor tweet generates attention after posting and observing how the wavelength of each ripple differs. This can be explained by the 

status of the tweet, e.g. if the tweet was posted by a celebrity or any user with high followership base, it has the potential of attracting interest, thereby generating more 

ripples before dying out. Sub-figure (b) shows how IRT can measure the ability of a tweet to attract interest. The attributes in the figure constitute the status of a tweet and 

define its relevance in terms of engagement magnitude or more ripples in sub-figure (a). Higher values denote a more attractive tweet, and the lower categories imply, the 

higher chances all tweets will possess. 
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N

his behaviour was previously observed and termed pointless bub-

les [3] . In some cases, most similar tweets (assumed random)

re posted around 10am – 4pm and evening period, perhaps

ue to a large number of tweets are produced within this pe-

iod i.e., in comparison with other times of the day. Leveraging

his insight and the idea of tweet’s status can be a useful strat-

gy from a search and ads viewpoints, among other benefits. In-

eed, this is a complex phenomenon that requires many variables

such as collection window, topical discourse and other implicit

actors) to be accounted for to improve searches. Other key fac-

ors capable of enhancing similarity computation irrespective of

he similarity metrics are the popularity of topic and the posting

eriod . 

. Conclusion and future work 

The flexible roles of users as both producers and consumers of

ontent in modern social media are empowering as well as posing

any challenges regarding efficient access to relevant information.

his paper presents a deep learning strategy based on the idea of

 tweet’s footprint to improve search and navigation in social me-

ia platforms and an efficient searching algorithm. Our approach

ircumnavigates the challenges in the time-consuming sequential

earch for similar items on Twitter by ensuring less search space

nd improved efficiency. We demonstrate a pragmatic approach to

tudy the distribution and patterns of similar and dissimilar tweets

y considering various bootstrap samples drawn from a collection

f tweets. We quantify the associated uncertainties and offer use-

ul insights for practical applications. We show how window size

ffects the distribution of similarity. Increasing the window size to

0 0 0+ was shown to result in high numbers of similar tweets but

hat 40 0–50 0 is adequate, especially when the content is about re-

ated topics. Concerning SBT and DVT, the window size often spans

p to 800 and 1500, respectively. This research is underpinned by

tatistical evidence which strengthens the validity of the findings.

mongst other benefits, our technique can be applied to various

pplication domains such as topic tracking and detection, cluster-

ng and ads. 
uture work. The proposed SWAPS algorithm balances the trade-

ff between speed and accuracy, which may omit some relevant

tems and compromise performance. To maximise the algorithm’s

unctionality, future work will focus on deep reinforcement learn-

ng (DRL) to utilise the algorithm in crafting a policy to be utilised

y DRL agent. As influential Twitter users promote the exponen-

ial growth of particular topics, it becomes challenging to search

or less popular topics. The platform then becomes biased towards

hose influential users. Future research will allow an understand-

ng of the most appropriate time to analyse data from a wide

ange of specific sets of users, not only the most famous or prolific

nes. 
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Appendix A. Some examples 

Table A.4 

Example of anchor tweets and corresponding circle members from DVT. 

Type Text 

Anchor Why did two of the biggest wrestlers in the world pull ou

Circles foreign office wants to for crimes against journalists. first ste

Circles the best way to screw the saudi government out of their mon

Circles this the series of bjp biggies who have used foul language ag

Circles perfect eression of the circularity of us policy toward the Sau

Circles erdogan says that the order to assassinate khashoggi came fr

Anchor hulk hogan returns - brock wins the universal title – show

Circles president of turkey recep tayyip rrdogan writes in op-ed: sau

jamal 

Circles president of turkey recep tayyip rrdogan writes in op-ed: sau

jamal 

Circles hulk hogan coming out to real American in Saudi Arabia is ab

Circles i think the role of the UK govt is not only in bilateral relation

ground 

Anchor how many mexican journalists have been slaughtered by t

same 

Circles I am having a blast watching journalists scramble trying to d

Circles i have never felt so much hatred and bigotry in my life. ever

issue in Nigeria, there is a need for frank discussion betwe

Circles i wait for the day that the Saudi Arabian money of is shown 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi; 10.1016/j.osnem.2019.07.002 . 
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