

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2021 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D5.1 Security Analysis Concept and Methodology for
EDDI development

Version 1.0

23 December 2021
Final

Public Distribution

FORTH

D5.1 Security Analysis Concept and Methodology for EDDI development

Page ii Version 1.0 23 December 2021

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Maria Michael

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: mmichael@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial draft with outline and first content 21 October 2021

0.2 First draft 7 December 2021

0.3 Ready for internal review 20 December 2021

0.4 Reviewed version 22 December 2021

1.0 Final QA version 23 December 2021

D5.1 Security Analysis Concept and Methodology for EDDI development

Page iv Version 1.0 23 December 2021

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 Security challenge ... 1

2. The challenge of Security assessment .. 2

2.1 Defining the problem ... 2
2.1.1 Definitions .. 4
2.1.2 Attacks .. 5

2.2 State of the art in security assessment ... 10
2.2.1 Threat modeling and security assessment ... 10
2.2.2 Security assessment in robotic systems ... 15
2.2.3 Security knowledge repositories ... 17

3. The SESAME Security Methodology .. 20

3.1 Processes of the SESAME security methodology .. 20
3.1.1 Identification of vulnerabilities ... 20
3.1.2 Identification of potential attacks .. 23
3.1.3 Identification of mitigations .. 23
3.1.4 Generation of attack trees ... 24
3.1.5 Generation of security EDDIs ... 26
3.1.6 Runtime security ... 29
3.1.7 Safety and security .. 30

3.2 Applying SESAME methodology ... 30

4. Conclusions .. 38

5. References .. 39

TABLE OF FIGURES

Figure 1: Threat categories of STRIDE from [33] .. 12
Figure 2: Stages of assessment in PASTA from [33] ... 13
Figure 3: Process steps in LINDDUN from [31] .. 13
Figure 4: Metric groups of CVSS from [32] ... 14
Figure 5: CVE record lifecycle ... 18
Figure 6: Hierarchy of Cross Site Tracing attack in CAPEC .. 19
Figure 7: SESAME security methodology ... 22
Figure 8: Discovering potential attacks from known vulnerabilities – from [50] ... 23
Figure 9: Example graph that can be produced utilizing the CanFollow relationship of CAPEC 24
Figure 10: Example Attack Tree Template ... 26
Figure 11: ODE TARA package ... 28
Figure 12: Main software components of a Robot .. 31
Figure 13: Combined attack patterns based on the CanFollow and CanPrecede relationships ... 36
Figure 14: Attack tree created by a template attack tree and identified attacks for the Locomotec use case.................... 37

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable describes the proposed security assessment concept and methodology

that is going to be used in the SESAME project. The aim of identifying the security

flaws of multi-robot systems has been proven to be challenging due to the increased

connectivity of the robots, the fact that they operate in proximity with humans, and the

low realization of risks that robotic systems face.

The state-of-the-art techniques, tools and repositories used for conducting security

assessment are presented, investigating how they can be utilized for the definition of the

SESAME security assessment concept and methodology. Security assessment in robotic

systems is reviewed, trying to identify patterns in the used methodology.

The steps of SESAME security assessment are listed, and a proof-of-concept

application of the methodology based on a high-level description of one of the use-case

robotic systems is presented.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page vi Version 1.0 23 December 2021

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

AiTB Adversary in the Browser

AiTM Adversary in the Middle

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

XSS Cross-Site Scripting

CAN CVE Numbering Authorities

CPS Cyber Physical Systems

DFDs Data Flow Diagrams

DoS Denial-of-Service

EM ElectroMagnetic

EDDI Executable Digital Dependability Identity

IPS Intrusion Prevention System

MX Mail Exchange

NVD National Vulnerability Database

NGFW next-generation

ODE Open Dependability Exchange

OSSTM Open Source Security Testing Methodology

PUF Physically Unclonable Function

ROS Robot Operating System

RVD Robot Vulnerability Database

RTT Round-Trip Time

SSI Server Side Include

SACM Structured Assurance Case Meta-Model

UTM Unified Threat Management

URL Uniform Resource Locator

UAV Unmanned Aerial Vehicle

VDP Velocity-Dependent Path

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

Software and hardware vulnerabilities in the context of robotic systems are a fact with

very serious potential consequences. Such vulnerabilities can trigger attacks that cause

financial damage, exposure of sensitive data, loss of the customers’ trust, negative

effects to critical goods, even human injuries and losses. Robotic systems have an active

part in many industry sectors such as automotive, energy (traditional and alternative),

food, pharmaceutical, aerospace, etc. All industry sectors are extremely important for a

nation, and that is the reason why they can become targets of adversaries.

The need for securing robotic systems is indisputable, however, the burden of

materializing such a task should be carried out not only by the robot designers and

operators but the standards creators, software developers, robot vendors, and security

experts. Their goal is to make the process of exploiting robot vulnerabilities challenging

and resource demanding

1.2 SECURITY CHALLENGE

Robotic systems of today face a whole new category of threats due to a number of

newly adopted characteristics. They have been part of our daily life, integrated into cars,

appliances, surveillance platforms, medical equipment, etc., operating in close

proximity to humans. Moreover, they make use of software that does not incorporate

security mechanisms for protection to malicious threats. Said robotic systems need to be

connected to the outside world for monitoring and maintenance, creating APIs and

introducing new attack surfaces. Finally, the administrators of such systems do not seem

to be aware of the new risks due to the traditional industrial robot environment that used

to be closed and trusted. Due to all these reasons, security assessment of robotic systems

has become necessary but challenging.

The rest of the deliverable is structured as follows. In the Challenge of Security

Assessment section, the definition of the problem of security threats in robotic systems

is described, listing the main reasons why such systems become attack targets.

Moreover, the state-of-the-art techniques of conducting security assessment are

presented. Different kinds of attacks, protection mechanisms and the most common

robot specific attacks are mentioned. The threat modelling process and different threat

modelling models are described. Works found in the literature that present security

assessment approaches on robotic systems are referenced. The last part of this section

includes security knowledge repositories that are used in the proposed methodology.

Section 3 presents the steps of the SESAME security methodology along with a proof-

of-concept application. Finally, in section 4 we present our concluding remarks.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 2 Version 1.0 23 December 2021

Confidentiality: Public Distribution

2. THE CHALLENGE OF SECURITY ASSESSMENT

2.1 DEFINING THE PROBLEM

One dimension of the cybersecurity problem regarding robotic systems is their growing

pervasiveness to our daily life. Some of the robotic domains that blend in with society

are autonomous vehicles, surveillance platforms, robot-assisted surgery, home service

robots, industrial automation, providing surface for attacks with real-world

consequences and risks. For example, attacks to industrial robot arms can cause injuries,

compromised driverless vehicles can even bring death to passengers and pedestrians,

while an attack to a personal robot making use of IoT devices, could potentially become

a threat for privacy and cause identity theft [1].

Another aspect of the problem is the Robot Operating System (ROS), a robotic middle-

ware standard that allows for the creation of heterogeneous clusters of robots by

offering communication among its members [2]. The great adoption of this standard due

to its strengths such as the active community and the offered code reuse not only by

researchers but also by the industry reveals its drawbacks such as network security,

authorization and resource permissions.

ROS as described in [1] was created based on a set of goals such as peer-to-peer

communication, tools-based building, multi-lingual supporting, thin ideology, free and

open source distribution. ROS is a meta-operating system for robots. Services provided

by ROS include hardware abstraction, low-level device control, implementation of

commonly-used functionality, message-passing between processes, and package

management. One of its strongest features is the fact that it offers tools and independent

libraries making its code reusable across multiple systems.

ROS is expected to play an increasingly important role in robotics, especially now that

the digitization of industrial systems is taking place. Most probably, ROS will be used

in real-life tasks and not so much in pure research-oriented scenarios. These new

potentials of ROS bring to the surface its serious security issues. Said issues must be

tackled before the creation and distribution of commercial products that are based on

ROS. In this section we are presenting the most well-known vulnerabilities of ROS that

is it proven that can be exploited.

A set of ROS drawbacks are presented in [1] including secure communication, access

control, and process profiles. The XML-RPC protocol is used in ROS for the

intercommunication of nodes. Messages are serialized with the help of libraries such as

ROSTCP or ROSUDP and travel through IP sockets. However, this communication

infrastructure lacks data encryption and integrity checking. As a result, ROS becomes

an ideal target for attacks such as packet sniffing and man-in-the-middle. Content of

packets can be altered and sensitive information can be stolen violating traditional

security properties such as confidentiality and integrity. As far as access control is

concerned, name-spaces are used for the definition of topics, services, names of nodes,

and other locations in ROS’ graph. No access control is provided regarding actions that

a particular node is allowed to perform such as i) to what topics to publish or subscribe,

ii) what parameters to read or write, iii) what services to invoke, or iv) which ROS API

to make use of. Consequently, security problems such as compromised nodes, mode

unavailability and registration to unallowed name-spaces may rise. The last-mentioned

drawback of ROS is the fact that its packages are created from different sources,

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 3

Confidentiality: Public Distribution

creating a large set of dependencies regarding vulnerabilities. Using MAC for ROS

node processes could help protect from zero-day exploits.

Several vulnerabilities known to the authors of [3] are presented in their work, including

communications in plain-text and unprotected TCP ports. ROS node-to-node

communication includes exchange of messages in plain-text allowing for easy

interpretation of the message form by a malicious user. This can result in spoofing of

fake messages. Another vulnerability of ROS is the fact that its internal communication

is based on TCP ports, to allow for connected robots to be placed in a distributed way.

The downside of this approach is that TCP ports are exposed offering, at the same time,

little authentication.

The need for security assessment of robotic systems is highlighted [4], mentioning some

observations that the authors have made regarding industrial robots. The first

observation is the increased connectivity of robotic systems that creates attack surfaces.

Industrial robots used to work isolated inside controlled environments but due to their

integration with ICT ecosystems, they are now connected to external networks and even

to the Internet. This connectivity of industrial robots, as a way for controlling,

monitoring and maintenance, is also included in ISO standards for robot systems

integration [5]. There is a movement towards the creation of robot APIs that offer

endpoints where user-defined requests end up and allow for the control of the robots.

Administration and supervision of robots can be done even from portable devices such

as smartphones [6].

Moreover, there is a trend to implement safety mechanisms creating programs and

libraries moving away from hardware implementations of the past. This new kind of

implementation, creates the severity of potential security incidents. If we combine this

with the new generation of industrial robots that work closely to humans, we end up

with a broader impact of security attacks on robotic systems that can easily threaten

humans.

Another mentioned observation is the low realization of risks that the robotic systems

are exposed to. Authors in [4] conducted a survey and some of the results showed that:

i) default safety measures are changed due to the introduced limitation (60% of the

survey respondents), ii) access control is not applied to robots and robot-controllers

(28% of the survey respondents), and iii) security assessment is not utilized as a security

tool (76% of the survey respondents).

It seems that the previous way that industrial robots used to offer their services, in

environments that were closed and trusted, drove the robot manufactures to neglect

necessary security mechanisms [7].

The security problem becomes denser in distributed MRSs. In such setups if one robot

becomes the target of an attack, it can potentially affect other robots or even the whole

system. The compromised robot can act as bad robot aka bad bot, in the sense that will

perform malicious automated tasks at the adversary’s will, starting attacks to other

system components including robots or robot-controllers. A representative example is

mentioned [8], where 100 drones crashed into a building while a light show was taking

place in Chongqing, China. The problem started from the mainframe control [9].

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 4 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Security assessment of robotic systems, meaning the process of identifying, assessing

and treating security risks to be compliant with the system security requirements, seems

to be a necessity. Said process includes recognition of assets and security holes,

identification of corresponding threats able to compromise the system assets, and

discovery of protection means taking under consideration the calculated risk.

2.1.1 Definitions

In this section we list a few of the most common terms along with their definitions that

we encounter in security assessment [10].

Threat: Any event with the potential to impact operations and assets through a system

via unauthorized access, destruction, disclosure, or modification of information, and/or

denial of service.

Vulnerability: A weakness in a system that could be exploited by a threat source.

Impact: The magnitude of harm that can be expected from an unauthorized disclosure,

modification or destruction of information or system availability.

Likelihood: A weighted risk factor of the probability that a given threat source is

capable of exploiting a given vulnerability or set of vulnerabilities.

Intrusion: ―A security event, or a combination of multiple security events, that

constitutes a security incident in which an intruder gains, or attempts to gain, access to a

system or system resource without having authorization to do so.‖
1

Breach: ―The loss of control, compromise, unauthorized disclosure, unauthorized

acquisition, or any similar occurrence where: a person other than an authorized user

accesses or potentially accesses personally identifiable information; or an authorized

user accesses personally identifiable information for another than authorized purpose.‖
2

System Characterization: Identify applications, hardware, operating systems and

endpoint devices.

Threat Source Identification: Identify sources of potential threats. Threats are

categorized in:

 Human threats e.g. malware, data breaches

 Environmental threats e.g. power failures

 Natural threats e.g. storms, fires.

Vulnerability Identification: Identify exploitable weaknesses such as unpatched

systems, weak security policies, poor password practises etc.

Control Analysis: Identify security controls such as firewalls, antivirus tools as well as

alarms and locks.

1
 https://csrc.nist.gov/glossary/term/intrusion

2
 https://csrc.nist.gov/glossary/term/breach

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 5

Confidentiality: Public Distribution

Likelihood Determination: Assess the probability of a security breach based on the

identified threats, vulnerabilities and security controls. There are three tiers:

 High

 Medium

 Low

Impact Analysis: Estimate the damage that will occur from a security breach in terms

of value of hardware or data, reputation damage, loss of confidentiality, cost of repair.

Risk Determination: Quantify risk based on the likelihood of a threat combined with

the vulnerability and the value of a specific asset.

2.1.2 Attacks

There is an unofficial methodology (can be considered a presumed model) that the

attackers follow in order to achieve a successful attack that will lead them to their final

goal regarding the manipulation of the target system. The first step of this methodology

is the one called reconnaissance including gathering of information. Social engineering

and the use of some automated tools, such as searchers, lead to the extraction of

desirable information such as IP addresses or URLs (Uniform Resource Locator) [11]

[12] [13] [14].

Continuing with the second step, gathered information is used for the discovery of hosts

in a network and any available information such as operating system, active ports,

services, and applications in a procedure is called scanning. A port scan will reveal

ports of a network that are open or closed and services that are available. The

discovered services are potentially having vulnerabilities that an attacker could take

advantage of and start an attack [15]. The third and final step is the launching of the

attack itself.

One way to categorize the attacks that target robotic systems is the one presented in [7].

The type of the attack (digital, physical) and its location (local, remote) create four

combinations (local-digital, remote-digital, local-physical and remote-physical) where

each attack can be assigned.

Local-digital attack examples are the installation of malware via a USB drive that can

be attached physically on a robot. Another example is a DoS attack that is launched

from a node hosted locally. There is a plethora of remote-digital attacks, since they can

be conducted easier, including remote DoS, remote compromise of a system

vulnerability, phishing attempts, malware sent via emails or remote services, etc. Local-

physical attacks include theft and vandalism of the system in question or even hostile

hardware installation. Finally, remote-physical attacks can be conducted on-site with the

help of remote-controlled devices, such as drones.

2.1.2.1 Description of attacks

Due to the very nature of robotic systems, the fact that a large number of robotic nodes

are interconnected, allows for a large number of different attacks. The most common

ones will be presented in this section.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 6 Version 1.0 23 December 2021

Confidentiality: Public Distribution

DoS/DDoS attack: A Denial-of-Service (DoS) attack aims to shut down a system or a

network making its services unavailable to its users. This is performed by overloading

the network with a great number of automatically produced service requests or by

making it crash. Said requests are not to be served but their aim is to flood the target,

consume its resources slowing it down or even making it inaccessible. A DoS attack

makes use of only one attacker but if more of them cooperate then another type of

attack is conducted, a Distributed Denial-of-Service (DDoS) attack. The victim is

common and it is attacked by several locations simultaneously. The created number of

attacking locations enables the attacker to execute a really troublemaking attack and

hide its true location.

Spoofing attack: During a spoofing attack the attacker pretends to be an authorized

user or device and aims to bypass the access control system and get access to the system

in question, steal data or money, or spread malware. Email spoofing, URL spoofing, IP

spoofing and DNS spoofing are some examples. Regarding robotic systems, such an

attack could make a robot behave unexpectedly. For example, a GPS spoofing attack,

can send fake GPS coordinates to the control unit of a drone and force it to change its

original trajectory [16].

Man-in-the-middle attack: A man-in-the-middle attack is conducted when the attacker

positions themselves between a user and an application, allowing them to manipulate

the exchanged traffic. As we have already discussed, ROS, probably the most

widespread operating system for robots, does not offer encrypted and secure

communications. The information included in these communications can be control

instructions, software updates or applications. Manipulating traffic in such ways could

allow for insertion of malicious commands that could be executed by the target-robot,

creating even safety issues.

Tampering attack: A tampering attack modifies parameters that are exchanged

between a client and a server. In that way, different kind of data, such as credentials,

permissions or quantity of ordered products can be manipulated. In the context of

robotics, manipulated data can be calibration parameters of a robot or production logic

[4].

Replay attack: A replay attack occurs when a secure network communication is

intercepted and then it is delayed or resent to the receiver. The advantage of this type of

attack is that there is no need for decryption of the message itself. The attack is

performed by just resending the original message. The replay attack can be performed

asynchronously even after the end of the original communication. A successful Replay

attack allows adversaries to imitate authenticated users and try to take over their

accounts.

Fault injection attack: A fault injection attack, regarding categorization, falls into the

physical attacks. Its aim is to inject a fault in a system in order to bypass security

mechanisms, change the normal behavior of the system or extract sensitive information.

The injection of the fault has to be precise and it can be done using techniques such as

voltage glitching, clock glitching, laser injection, electromagnetic (EM) injection. Such

an attack can be performed via the hardware or the software.

Sybil attack: A Sybil attack is an attack observed in peer-to-peer networks, where a

node pretends to be multiple regular nodes at the same time, creating fake identities. In

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 7

Confidentiality: Public Distribution

a peer-to-peer network, that can lead to the manipulation of the whole network, by

gaining the majority of the influence.

Jamming attack: A jamming attack is a type of DoS attack that is observed in wireless

sensor networks (WSNs) where IEEE 802.15.4 standard is used. During such an attack,

the attacker interferes traffic into the communication channel degrading the

performance of the network and disrupting the communication of the regular users.

HW Backdoor attack: One way of accomplishing a Hardware backdoor attack is by

physically code to hardware. Sometimes it can be done during the manufacturing

process. Said code is triggered by an event and can be used for bypassing authentication

mechanisms or encryption processes. Hardware backdoor’s impact is considered very

severe since it cannot be detected by conventional security mechanisms.

Remote access Trojan attack: Such an attack includes a malware program that is

downloaded at the target computer in disguise, as part of another program or as an email

attachment. This malware makes use of a backdoor to take administrative rights to

compromise the target. One common tactic then is to distribute RATs to other

computers and create a botnet of compromised hosts.

Stealthy attack: An attack is characterized as stealthy if the attack process remains

hidden. This can be achieved by manipulating the target system in such a way that its

original behavior is not altered. Authors in [17] claim that these attacks present a

regularity and can be detected.

SQL Injection attack: The target of such an attack is web applications and SQL

databases that can be accessed via the Internet. Known vulnerabilities of said

applications are explored to inject code in the form of SQL statements. These

statements run on the database and can steal, alter or delete the database contents.

Except for the loss of the actual data, the loss of customer trust should also be taken

under consideration.

Cross-Site Scripting (XSS): XSS is another code injection attack that targets web

applications. XSS includes the injection of malicious content to an application

(JavaScript HTML), targeting cookies or other information regarding session. The usual

aim is the redirection of the user to a malicious website, where the attacker can steal

sensitive information such as usernames, passwords, bank credentials etc.

2.1.2.2 Protection mechanisms

The large variety of attacks dictates the existence of protection mechanisms that are able

to protect a system against known attacks. In this section, we briefly present such state-

of-the-art security solutions.

Network segmentation: According to this protection mechanism, a network is divided

into a set of smaller and isolated subnetworks. This division has multiple advantages

since it i) minimizes the attack surface exposing only the dedicated to services

subnetwork, ii) makes harder for the attacker to locate resources that are scattered in

many different subnetworks, iii) isolates architecture components that are considered

vulnerable such as outdated ones, iv) makes it easier to enforce access policies to

targeted subnetworks, and v) minimizes the damage in case of a successful attack. A

very popular way to achieve network segmentation is by creating rules that dictate

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 8 Version 1.0 23 December 2021

Confidentiality: Public Distribution

communications among hosts and services. Authors in [18] propose MilSeg, an

architecture that segregates military networks in the SDN environment in order to

minimize various attack vectors and spread of damage from the attacks.

Firewall: Firewalls is a security mechanism that monitors inbound and outbound

network traffic. A set of rules allows for deciding which traffic is blocked or not. A

common position for a firewall is the gateway of a system where the traffic that is

exchanged with other networks is filtered, fencing the internal trusted network from the

external untrusted ones. A firewall can be implemented as hardware or software. There

are several types of firewall including proxy firewalls, stateful inspection firewalls,

Unified threat management (UTM) firewalls, next-generation (NGFW) firewalls, threat-

focused NGFW, and virtual firewall [19].

Intrusion Detection System (IDS): IDS can also be implemented as software or

hardware and filters traffic trying to identify malicious packets. There are three main

types of IDS: host based, network based and application based [20]. Host based IDSs

are deployed on hosts and monitor incoming and outgoing traffic. Such hosts are

systems that carry sensitive data, cannot be patched or have other reasons for extra

security measures. Network based IDSs are placed in key points in networks, such as

the gateway, and filter the traffic that is exchanged among the different devices of the

network. Application based IDSs try to identify intrusions by filtering traffic on

application specific protocols, such as SQL protocol. In all of the above, and in case an

intrusion is detected, the administrator is alerted. Moreover, there are two different

types of detection that is used by IDS: signature based and anomaly detection based.

The former has an advantage regarding the known attacks, since they can be detected

with great precision. The way it is done is by recognizing specific patterns in the

headers or body of traffic packets. On the other hand, anomaly detection based IDSs are

better at discovering unknown attacks. Said attacks alter the traffic making it different

from the norm. Machine learning techniques, such as Tree classifiers, Bayesian

Clustering, Deep Learning are used for the detection of unknown attacks.

Intrusion Prevention System (IPS): IPSs extend in a way IDSs since they incorporate

an additional functionality, the prevention. They are in place to prevent detected

intrusions and to do so, they need to be deployed in line. Actions that are taken include

packet drop, traffic blockage, and connection reset.

Anti-Virus: Anti-Viruses are programs that are installed in hosts aiming to detect and

remove malware. The technique that is used is the comparison of malware signatures

with the installed software in the host. Additional types of anti-Viruses are able to check

incoming to host documents such as mail, attachments, etc. trying to identify unusual

properties due to known viruses [21].

Breach Detection System (BDS): BDSs are able to detect breaches or side-channel

attacks that are not found by any other security mechanism, by focusing on the traffic

that is exchanged inside a given network. A set of techniques are used for the detection

of breaches such as traffic analysis, risk assessment, safe marked traffic, data policy

understanding and violation reporting. There are three main way for the BDS to be

deployed: i) out of band, where the traffic is mirrored to the BDS for scanning, ii) in

line, where the IDS is deployed between the network in question and the WAN

interface, and iii) deployment on endpoint machines.

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 9

Confidentiality: Public Distribution

Anti-phishing: Such a security solution protects from phishing attempts by detecting

and blocking them in internet content. In that way, unauthorized access to sensitive data

is avoided. Additional services include analysis of how data has been stolen, data

recovery and protection from additional hacking.

Unified Threat Management (UTM): UTM can be a hardware or software solution

that combines different security mechanisms at a single point. In that way, the end client

does not need to be supplied with several security tools that each provides one security

function.

Encryption: During encryption, a corresponding algorithm, called cipher, takes data,

also called plaintext, as input and creates encoded data that is called ciphertext. The

produced encrypted data can be decrypted only by authorized parties. There are two

types of encryption, symmetric and asymmetric. The former uses the same key for

encryption and decryption of the plain text. In case said key can be kept safe or there is

no need to be transferred somewhere else, a symmetric type of encryption can be used.

On the other hand, for encryption of communication between server and client, the

asymmetric encryption is used, where the encryption is used with a key that can be

revealed, public key, while the decryption is done with private keys that only authorized

parties have.

Penetration Testing: Penetration testing is the process of launching simulated

cyberattacks making use of strategies and tools that are meant for exploitation. The aim

of penetration testing is the identification of flaws that could be the starting point of

attacks. In that way, the security protection mechanisms and policies can be defined.

Another way that penetration testing is useful is for the testing of the security policy

effectiveness, the compliance to regulations, and the overall security awareness. The

ultimate goal is to discover the weaknesses of a given system before they are discovered

by adversaries that could take advantage of them.

In case of a network, a penetration testing process could reveal unused ports, firewall

rules that need to be corrected or fine-tuned, and other security flaws. In case of web

applications, buffer overflow, SQL injection, cross-site scripting, and other

vulnerabilities may be revealed. Other types of attacks that can be performed during a

penetration testing are those that try to steal or alter sensitive information from a

system.

There are different strategies that are used, including external, internal, blind, double

blind, and targeted testing. Types of tools that are used during such a process, include

port scanners, vulnerability scanners, application scanners and web application

assessment proxies.

2.1.2.3 Robot-specific attacks

There are some types of attacks that seem to be common as far as industrial robot

systems are concerned. The frequency of occurrence of said types of attack is due to the

existence of architectural commonalities and standards. Based on 4 desired robot

properties, named sensor reading, control logic execution, movement precision, and

human safety, authors in [22] created corresponding classes of attacks:

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 10 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Altering the control-loop parameters. During such an attack, kinematics and

configuration parameters are modified in a way that the robot’s reference signal,

position and speed, center of gravity and mass, and breaks are changed causing

unexpected movements. The result of this attack could lead to faulty products.

Tampering calibration parameters. This attack can change the copy of the calibration

parameters of a robot that is stored in the controller. The outcome can be very similar to

the previous attack or if the controller checks the position and speed of the robot, the

whole procedure will be put in a halt. In that way, an attack that tampers calibration

parameters can have the effects of a DoS attack.

Tampering with the production logic. An attacker could take advantage of known

vulnerabilities and change different program tasks including the whole process of

product manufacturing.

Altering user-perceived robot state. In the case where a UI acts as an intermediate for

the user of the robot to be informed about the robot’s state, an attack that modifies said

UI could be critical. During such an attack, the user is not aware about the true state of

the robot and may make wrong decisions regarding safety issues, causing even human

injuries.

Altering the robot state. Such an attack may alter the true state of a robot without the

controller or the operator noticing it. This is due to the fact that some features, such as

the mode the robot works on, can be changed via software. For example, an operator

that believes that a robot works on automatic mode may decide to walk really close to it.

At the same time an attacker changes the mode to manual and makes the robot move in

a way that injures the operator.

We should mention here that all the aforementioned attacks can lead to safety

implications due to the close proximity of the robots in contemporary robotic systems to

the human operators.

2.2 STATE OF THE ART IN SECURITY ASSESSMENT

2.2.1 Threat modeling and security assessment

The selection of security measures is not just a collection of security technologies at

random. A security designer must take under consideration the design of the whole

system in question. Ideally, the security concerns should be tackled as soon as possible,

incorporating the design of the security in the system design process.

Threat modeling is the process of identifying, communicating and understanding the

threats of a given system, and then defining countermeasures to mitigate the effects of

said threats that bring to the system [23]. Threat modeling investigates a system through

the adversary’s perspective and helps the designers to predict potential attacks,

answering questions like what the system needs to protect and from whom. The benefits

of threat model are of great value regardless of the stage of development of the system

[24].

The main goals are to reveal critical issues and challenges during implementing security

and to define and document the security requirements of a given system. The

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 11

Confidentiality: Public Distribution

identification of assets, vulnerabilities, potential attacks, and mitigations are very

important. Threat modeling is a structured process and includes steps such as system

description, architecture dataflow, architecture components and their trust boundaries,

identification of system entry points, threat analysis and determination of

countermeasures.

The high-level threat modeling steps mentioned by the Open Web Application Security

Project (OWASP) are the following [23]:

 Decompose the application. Information about the application is gathered and

documented including dependencies, entry/exit points, assets, trust levels, and

data flow.

 Determine and rank threats. Threats are categorized and STRIDE
3
/DREAD

4

threat models are used for ranking and risk estimation.

 Determine Countermeasures and Mitigation. Countermeasures are identified

based on the categorization of threats with STRIDE and Application Security

Frame (ASF).

 Complementing code review. The outcome of the threat modeling process

allows code analysis to be focused on components with higher risk.

Moreover, the corresponding steps followed to perform threat analysis to ROS2 robotic

systems are: [25]

 System description. The actors, assets and entry points are defined.

 Architecture dataflow diagram. The communications between all the

components of the robot are represented in dataflow diagram.

 Robot application components and trust boundaries. Trusted and untrusted

components are identified.

 Threat analysis and modeling. STRIDE and DREAD are used for the creation of

a table with the whole produced information.

Currently there is a large number of threat modeling methods with different

characteristics. Some of them are more abstract promoting granularity, while others are

people-centric. Of course, they can be combined during a threat modeling process to

produce a more comprehensive understanding of the potential threats. Some of these

methods are described below:

 STRIDE: STRIDE is considered the most mature among the threat modeling

methods. It was invented in 1999 and adopted by Microsoft in 2002, while

variants have been created since then [26] [27] [28]. Initially, the modeling of

the system in question is taking place, while data flow diagrams are used for

3
 Spoofing identity, Tampering with data, Repudiation threats, Information disclosure, Denial of service and Elevation

of privileges (STRIDE)
4
 Damage Potential, Reproducibility, Exploitability, Affected Users, Discoverability (DREAD)

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 12 Version 1.0 23 December 2021

Confidentiality: Public Distribution

depiction of entities and boundaries. The next step is the identification of threats.

The name of the method is an acronym meaning Spoofing identity, Tampering

with data, Repudiation, Information disclosure, Denial of service, and Elevation

of privilege, and is used as a mnemonic for threat discovery. Figure 1 includes

the definition of the corresponding threats and the properties that each threat

category violates. Available threat checklists and tables help this procedure [29].

Figure 1: Threat categories of STRIDE from [33]

According to [29], STRIDE has a low rate of false positives and a high rate of

false negatives. DREAD, a similar method developed by Microsoft, stands for

Damage potential, Reproducibility, Exploitability, Affected users,

Discoverability. Values are assigned to the five categories, while an average

value is calculated representing the overall risk of the system. However,

DREAD is not used by Microsoft since 2008 due to inconsistent ratings.

 PASTA: PASTA stands for Process for Attack Simulation and Threat Analysis

and is a threat model that incorporates a risk and impact analysis defining

threats, application vulnerabilities and priorities for countermeasures. It includes

seven stages of assessment, each one building on the top of the previous,

presented in Figure 2.

As it is described in [30], PASTA allows threat modeling to create security

output that is taken under consideration in many aspects of a business, such as

architecture, development, operations, even governance. In that way security is

put at the center of the entire business.

 LINDDUN: LINDDUN stands for Linkability, Identifiability, Non-Repudiation,

Detectability, Disclosure of Information, Unawareness, Non-Compliance, it

works as a mnemonic and the focus of this method is privacy. The followed

steps are depicted in Figure 3, below.

As it can be seen, the first step includes a DFD that illustrates the system data

flow, while the second step allows for mapping specific threats to the system

components. The third step of the ―problem space‖ part of the method includes

the identification of scenarios where the discovered threats can occur. Steps 2

and 3 are conducted based on questionnaires that help with the identification of

threats and scenarios. At the ―solution space‖ part the mitigation specification

takes place [31].

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 13

Confidentiality: Public Distribution

Figure 2: Stages of assessment in PASTA from [33]

Figure 3: Process steps in LINDDUN from [31]

 CVSS: CVSS is an acronym meaning Common Vulnerability Scoring System. It

is a framework that comprises information about software vulnerabilities, such

as characteristics that are constant or evolve over time and their severity. CVSS

consists of three metric groups, named Base, Temporal and Environmental.

Based on the former, a score is produced ranging from 0 to 10. The other groups

can modify this score [32]. The three metric groups are depicted in Figure 4,

below.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 14 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Figure 4: Metric groups of CVSS from [32]

The score produced by the Base metric group represents those characteristics of

a vulnerability that are constant, having in mind the worst possible impact that

said vulnerability could have among different deployments. Temporal metrics

adjust the output of the Base group based on characteristics that may change

such as availability. Finally, this assessment may also change based on the

environmental metrics that are based on the very specific characteristics of a

given environment.

There is a plethora of models that are available out there, each focusing on different

aspects, depending on the involved placeholders, the available resources, the previous

experience, the desirable outcome. Some additional models that are worthy to be

mentioned are Persona non Grata, Security Cards, hTMM, Quantitative TMM, Trike,

VAST Modelling, and OCTAVE [33].

Some worth mentioning, open-source threat modelling tools are:

 Cairis: Cairis [34] is an open-source web-based tool. The tool allows for

creation of attackers’ profiles. It identifies attack patterns and defines mitigation

actions.

 Microsoft Threat Modelling Tool: Microsoft Threat Modelling Tool [35] uses

the STRIDE methodology. Flow diagrams can be created, while threats and

corresponding mitigations are offered. There is a focus on Azure and Windows

services.

 OWASP Threat Dragon: OWASP Threat Dragon is an open-source web-based

tool. Its output include flow diagrams, lists of potential threats and mitigations.

The main advantage of this tool is its rule engine.

 Threagile: Threagile [36] is an open-sourced tool kit that is code-based. The

output is available in many formats. It is YAML-based, which makes it easy for

the threat model to be manipulated.

 Tutamantic: Tutamantic [37] is a flexible tool that allows for changes when the

design of the system changes. There is a Beta version that is free. It uses

taxonomies that are considered common, such as STRIDE, CWE and CAPEC,

and its output is available in different consumable forms.

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 15

Confidentiality: Public Distribution

2.2.2 Security assessment in robotic systems

As we have already mentioned, robots are invading many aspects of our daily life

including transportation, surveillance systems, home assistance, remote medical

services, goods production, energy networks, etc. The fact that robots couple different

types of sensors and actuators, human to machine interfaces, information processing and

mobility, introduces new vulnerabilities that can be exploited and cause economic

damage or even safety problems.

There are many works in the literature that present security analysis of different kinds of

robotic systems, trying to identify cyber-attacks and their impacts. In this section we

present some of these works.

Exploring attacks to robotic systems

Authors in [3] employ a cyber-physical honeypot that makes use of ROS and features

sensors and actuators allowing for a new set of vulnerabilities and exploits to be

discovered. The exploitation of the honeypot vulnerabilities was a contest challenge for

the attendees of the DEF CON 20 conference. The conducted security exploits included

false ROS messages injection. One of the learned lessons of this work is that the

security of cyber-physical systems demands knowledge in cyber and physical security,

and in robotics.

The work in [38] demonstrates hacking a modern automobile affecting systems such as

digital dash, door locks, brakes, and engine control component. Additionally, it was

shown in [39] that based on the Precision Immobilization Technique, the physical

security of a car-like sensor node can be compromised in a relatively simple way.

Authors in [40] present an evaluation of DoS attacks in two different Unmanned Aerial

Vehicles (UAVs), produced by three DoS attacks Tools. They perform a comparison

between the vulnerabilities of the two UAVs and also introduce a tool, able to run inside

ROS, for mitigating availability issues such as losing the control of the drone. Their

methodology for conducting the attacks included the following steps: a) Establish a

connection between the pilot and UAVs (AR.Drone and SOLO); b) Pilot sends

legitimate commands to UAVs under normal conditions; c) Establish a connection

between attacker and UAVs; d) The attacker makes reconnaissance attacks on UAVs; e)

Attacker launches a DoS attack towards UAVs. The proposed tool calculates the

Euclidean distance between the starting position (takeoff position) and the current

position of the UAV and when it reaches the 10-meter limit, the base station emits a

beep sound. According to their evaluation, the attacks resulted in lower average frame

rate of the UAVs’ cameras (dropping from 30 to almost 5) and larger average network

latency. Moreover, the use of a more powerful UAV showed that better hardware and

software configuration is not a solution to said attacks. Distributed Denial of Service

attacks could be utilized in future work. Additionally, the introduced solution for

mitigating availability issues affects the efficiency of the UAVs.

A model to represent the performance of multi-robot systems introducing the Velocity-

Dependent Path (VDP) that affects the workload completion times is introduced in [41].

In that way, critical execution paths and function nodes that determine the performance

of an MRS are determined. Their focus is on cloud-robotic systems, where the

computational tasks are migrated to the cloud to preserve task execution time and

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 16 Version 1.0 23 December 2021

Confidentiality: Public Distribution

battery life of the robots. Moreover, they identify possible attack strategies and design

three novel DoS attacks (Network Contention, Micro-architecture Contention, Direct

Delay), where just one malicious node can compromise the entire cloud-robotic

platform. The evaluation showed that during a Network contention attack: a) the Round-

Trip Time (RTT) of each message is significantly increased. When the flooding rate is

25 Hz, RTT of the victim message becomes 7.32ms (normal RTT is 2.24ms), with

maximum RTT 193ms; b) about 35% messages are dropped due to the network

contention in the wireless router (flooding rate 20 Hz). A micro-architecture contention

attack, where a malicious publisher floods dummy messages to subscriber nodes in the

same machine, increases the CPU utilization of the subscriber nodes making them

deprived of the CPU of other nodes. Finally, the performed Parameter manipulation

attack increased the processing time. The focus of the paper is on ROS since this is still

the most popular choice for products and companies. However, the newly introduced

ROS2 could possible mitigate said attacks. As future work, the authors mention their

intention to extend their evaluation to ROS2.

Security assessment methodologies

Authors in [42], present a structured methodology to conduct a security assessment over

Pepper, a commercial human-shaped social robot. Pepper is designed to infer basic

human emotions and react accordingly. It can be operated through ROS, one of the most

widespread middleware in robotics, and is equipped with a number of sensors such as

microphones, HD cameras, 3D depth and touch sensors. According to the presented

methodology, security assessment is conducted in two phases, i) an automated one

including a port scan and vulnerability scanning with OpenVAS and OWASP ZAP, and

ii) a manual one including traffic analysis with Wireshark, brute force attack with Hydra

and investigation of uncommon open ports. Said assessment revealed a number of

security flaws that may enable credentials spoofing, stored data steal, hacking of

connected devices. The authors propose countermeasures for every detected

vulnerability and point out the general trend of shallowness regarding the security status

of robots and IoT devices, especially those that are meant to interact with people.

A security assessment for the Franka Emika Panda is performed in [7]. The authors

analyse potential attack surfaces along with possible impacts on safety-relevant

parameters. Systematic penetration test is conducted based on the Open Source Security

Testing Methodology (OSSTM) and the OWASP testing guide. Countermeasures are

proposed for each of the found vulnerability to prevent corresponding cyber-attacks.

Although security tools were used (Nmap, Wireshark, Nessus, Burp Suite Pro), they

majority of the identified vulnerabilities was not pinpointed by said tools automatically.

The findings revealed that the web application of the Franka Emika Panda was the

attack surface with the most vulnerabilities. Moreover, the authors showed that a

security attack can affect both human safety and manufacturing process.

An analysis of the security issues of Cyber Physical Systems (CPS) is presented in [43].

The authors make use of a three-layer architecture: perception, transition and

application layer. Different security issues in each layer leads to different threats and the

need for different security solutions. According to the presented analysis, it can be

concluded that the most common security targets at the perception layer are the sensors

and the actuators; data leakage, DoS, control or destruction at the transmission level;

while privacy disclosure and unauthorized access at the application level. Although

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 17

Confidentiality: Public Distribution

CPSs have security needs of their own due to heterogeneous involved technologies,

general IT security techniques could be used to some extent. Suggested CPS focused

solution include Physically Unclonable Function (PUF) for the unique identification of

heterogeneous connected devices, dealing with integrity and authenticity. On the other

hand, PUF cannot be widely adopted since not all devices can implement PUF

technology. Moreover, an Identity-Based encryption technique that uses small key sizes

could be a solution for privacy issues, without burdening devices with limited resources.

Other suggested solutions are a unified data processing standard that allows for data

compression and data fusion techniques, and utilization of the cloud for computation

processes.

Authors in [4] present an experimental security analysis of an industrial robot controller.

They define an attacker model to express attackers of industrial robots based on their

goals, their level of access to the system, and their capabilities. Regarding the former,

four potential goals are mentioned: Production Outcome Altering, Physical Damage,

Production Plant Halting and Unauthorized Access. Access to the system can be gained

either from a network attacker, since controllers of robots are sometimes internet

exposed or remotely accessible from vendors, or from a physical attacker, which can

plug a device into the robot controller’s openly accessible ports. As far as the attacker

capabilities are concerned, attackers: a) can be insiders or general cybercriminals; b)

must be able to become familiar with the structure of the target robot; and c) access just

target firmware or both firmware and hardware (full-fledged deployment), in order to

discover vulnerabilities and test exploits. Moreover, robot-specific attack classes are

identified including Control Loop Alteration, User-perceived Robot State Alteration,

Robot State Alteration, Production Logic Tampering, Calibration Parameters

Tampering. In order to present the feasibility of said attacks a reference robot was used.

The range of the attacks were limited due to costs and robot security and safety

regulations. Additionally, only standard features of the reference robot were taken under

consideration without considering optional equipment that potentially increases the

attack surface.

2.2.3 Security knowledge repositories

There are many repositories, lists, directories that enclose information about

vulnerabilities, weaknesses, bugs, etc. This section includes the description of those that

are taking part in the SESAME security assessment process.

Common Vulnerabilities and Exposures (CVE). CVE [44] is actually a list of

computer security flaws, cybersecurity vulnerabilities, and can be used for searching or

incorporated into products and services for free. Each of these flaws is assigned an

identifier called CVE-ID, which is used as a dependable way to uniquely recognise

vulnerabilities. CVE-IDs are issued by CVE Numbering Authorities (CNA), group of IT

vendors, security companies and research organizations. Well-known vendors that are

considered CNAs are Adobe, Apple, Cisco, Linux, Google, HP, IBM, Microsoft,

Mozilla, Oracle, and Red Hat. Reports of CVEs can be done by almost anyone, even a

simple user of a product. In any case, when information about a vulnerability reaches a

CNA, a CVE-ID is assigned and a description is created. The final step is the

vulnerability to be posted on the CVE website. The sequence of steps in the lifecycle of

a CVE record are depicted in Figure 5.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 18 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Figure 5: CVE record lifecycle
5

The information that is disclosed for every vulnerability includes: description,

references to code repositories, assigning CNA, record date, etc. There is no

information about risks, impacts, countermeasures, since this part of other databases

such as National Vulnerability Database. CVE has the role of a baseline used among

security advisories, bug trackers and databases to communicate with each other.

However, not all vulnerabilities are reported to CVE. The WhiteSource’s 2018 Annual

Report on the State of Open Source Vulnerabilities Management, reported that only

86% of existing vulnerabilities are added in the CVE list. According to that, 14% of

vulnerabilities are reported somewhere else. Even though CVE list does not contain all

the possible vulnerabilities, it is the most popular repository used for vulnerability

documentation.

National Vulnerability Database (NVD). NVD [45] was created in 2000 with a

different name (Internet categorization of Attacks Toolkit) and later got its present form.

Its goal is to offer additional information about a CVE-ID of the CVE list. Said

information includes a description, a severity score according to CVSS (Critical, High,

Medium, Low), references to countermeasures, a list of relevant Common Weakness

Enumerations, known affected software configurations and change history. NVD is

fully synchronized with the CVE list and the provided information can be used for

detection and fix of published known vulnerabilities.

Common Weakness Enumeration (CWE). CWE [46] is essentially a list of weakness

types regarding software and hardware. This list is the output of a community effort that

creates very specific definitions for each of these types, trying to distinct each one from

the others while describing it in an adequate way. The members of the community are

able to submit software and hardware weaknesses in the CWE Research Discussion

List.

The information that is disclosed for every weakness includes: short and extended

description, alternate terms, relationships with other weaknesses (ChildOf, ParentOf,

CanFollow, MemberOf), modes of introduction, application platforms, common

consequences with specific scope (confidentiality, integrity, availability), likelihood of

exploit, demonstrative examples, observed examples, potential mitigation, detection

5
 https://www.cve.org/About/Process

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 19

Confidentiality: Public Distribution

methods, membership in specific CWE views, references in publications, and content

history (submission, modifications).

CWE offers a number of different representations of the available list of weaknesses,

based on concepts that are used in software development, hardware design, and

research. Moreover, there are more views such as ―CWE top 25 (year)‖, ―OWASP top

ten (year)‖, ―Architectural concepts‖. These view offer subsets of the list that are

connected to a specific factor. It is also worthy of mentioning that CWE calculations are

strongly biased in favour of frequency over severity as pointed out by authors in [47]

Common Attack Pattern Enumeration and Classification (CAPEC). CAPEC [48] is

a classification and dictionary of known attacks. Common attack patterns are described

helping the understanding of how weaknesses of systems can be exploited. New content

is constantly added by enterprises and public participation aiming the disclosure of

attack patterns to the security community. This information can be valuable for anyone

who wants to strength their defences.

Attack patterns are organized hierarchically. On the top of the hierarchy a number of

different categories can be found. Under these categories, meta patterns follow, and then

we find standard patterns. Finally, patterns with more details may be the children of the

standard patterns. Said hierarchy can be seen in Figure 6 for the Cross-Site Tracing

attack. In this specific example, Domains of attack is the view, Software is the top

category, Exploitation of Trusted Identifiers is the meta pattern, Session Hijacking is the

standard pattern, and Cross Site Tracing is the detailed one. As a result, the hierarchy of

the detailed pattern Cross Site Tracing, looks like this:

(V) Domains of attack (C) Software (M) Exploitation of Trusted Identifiers (S)

Session Hijacking (D) Cross Site Tracing

The usage of this hierarchy and naming convention, easies the discovery of attack

patterns and the definition of mitigation actions.

Figure 6: Hierarchy of Cross Site Tracing attack in CAPEC

The information that is disclosed for each attack includes: description, likelihood of

attack, severity, relationships with other attacks (ChildOf, ParentOf, etc.), execution

flow of the attack, prerequisites, required skills regarding the attacker, required

resources, indicators that the attack has been performed, consequences, mitigations,

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 20 Version 1.0 23 December 2021

Confidentiality: Public Distribution

example instances, weaknesses that are related to the attack, possible mappings to other

taxonomies, and content history.

Robot Vulnerability Database (RVD). RVD includes robot related vulnerabilities and

bugs that are referred to software and hardware. The aim is to record and categorize

robot related flaws. RVD is available at GitHub and offers tools that ease its

management. Robot Vulnerability Scoring System (RVSS) is used for the rating of the

included vulnerabilities.

3. THE SESAME SECURITY METHODOLOGY

3.1 PROCESSES OF THE SESAME SECURITY METHODOLOGY

As it is already described in section 2.2.1, the threat modeling process allows for the

specification of the security design and collection of security technologies that will be

adopted by a system, taking under consideration the system itself and its own security

requirements. The security assessment that will be conducted in the context of

SESAME is strongly influenced by the threat modeling process and adopts its main

principles. More specifically, SESAME security assessment follows a structured series

of steps, which overlaps in many cases with the highly structured process of threat

modeling and its clearly specified steps, based on the chosen model. Diagram in Figure

7 depicts the steps of our methodology, including inputs, outputs, additional external

resources, and processes.

Although the high-level steps described in the next sections constitute a general

approach, the key for a successful application of the proposed methodology to

individual MRSs with specific requirements is the detailed description of the system in

question. Concepts such as the assets importance and the trust boundaries that contain

assets, can describe the unique security requirements of a system. Moreover, the

identified vulnerabilities and their combination makes each system a different use case,

making the SESAME security methodology to produce varying outputs (potential attack

scenarios along with mitigations).

3.1.1 Identification of vulnerabilities

The security assessment starts with the description of the system. As it is indicated by

the threat modeling process, the description of the system in question, in terms of

architecture components, assets, entry points and trust boundaries, is necessary. This

information is gathered by the system administrator. The intention in this step of the

security assessment is a UI to be created where said information is collected by filling in

forms and answering corresponding questionnaires.

Based on the system description, all the deployed programs, libraries and services are

pinpointed. User’s input triggers the process during which free databases for the known

vulnerabilities of the recognized software are used, with CVE catalog to be the first

choice for this purpose. However, since our target systems are MRSs, RVD directory,

dedicated to disclosure of bugs, weaknesses and vulnerabilities in robots, is considered

a necessary addition. In that way, the complexity and special characteristics of robots,

not reflected in other vulnerability lists, is taken under consideration. RVD aspires to

add to the vulnerability disclosure with robotics specific information [49]. A parser

searches said vulnerability directories and, using the name and version of each software

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 21

Confidentiality: Public Distribution

present in the system in question, spots the associated vulnerabilities. Each of those

vulnerabilities are uniquely identified by the CVE identifiers (CVE-IDs). A list of such

CVE-IDs is the output of this process. The said vulnerability directories are constantly

updated with information regarding newly discovered vulnerabilities with a method

described in section 2.2.3. Inherently the approach followed here is also not static as it

will be in sync with the updated directories.

The process that was just described is also offered as functionality by a set of automated

tools, called vulnerability scanners. Following the same principle; they are scanning a

given network and/or subnetworks for available services and then use open vulnerability

databases to discover known vulnerabilities. OpenVAS, OPENSCAP, OWASP ZAP are

some of the open-source options. For the sake of completeness, the SESAME security

assessment includes the use of such scanning tools, since the provider of the system

information may not be aware of some services that are running in devices, which are

part of the system, and have some known vulnerabilities. Of course, the prerequisite in

this case is that the system must be up and running, otherwise the vulnerability scanning

tools cannot produce an output.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 22 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Figure 7: SESAME security methodology

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 23

Confidentiality: Public Distribution

3.1.2 Identification of potential attacks

The output of both processes of identification of vulnerabilities is a set of CVE-IDs,

which serves as input to the next step of the security assessment, the identification of

the potential attacks to the system. CWE catalog, a list of software and hardware

weakness types, is an additional input for the process during this step. CWE plays the

role of common language for security tools. Due to the wider acceptance of CWE it is

used as a stepping stone between the spotted vulnerabilities and the potential attacks.

Finally, CAPEC, a dictionary of identifiers for attack patterns that are used by attackers

to take advantage of weaknesses, is used as input.

Figure 8: Discovering potential attacks from known vulnerabilities – from [50]

Figure 8 depicts the route from the pinpointed vulnerabilities of a system software to the

information of the corresponding potential attacks, showing how all the aforementioned

directories are connected with each other.

CWE, as we already mentioned, is used as a connection point between CVE and

CAPEC. ―Weakness Enumeration‖ is one of the fields in the description of a given

vulnerability. In this field a list of all the weakness types, in the form of CWE-IDs, that

are related with the specific vulnerability is provided. Moreover, the description of

every weakness type (CWE-ID) includes a field called "Related Attack Patterns",

presenting the attack patterns (CAPEC-ID) used for the exploitation of the

corresponding weakness. In this way, it is possible to trace a list of CAPEC-IDs from a

single CVE-ID. This process is repeated for every of the discovered system

vulnerabilities, meaning that its output is a number of different sets of CAPEC-IDs, one

for each discovered CVE-ID.

Information related to a CAPEC-ID that is highly valuable to us, includes a description

in natural language, relationship with other attacks, prerequisites for the attack to be

performed, and mitigation actions.

3.1.3 Identification of mitigations

In subsection 2.2.3 we have already described the hierarchical classification of CAPEC

and the corresponding levels. CAPEC-IDs in standard and detailed levels usually

include mitigation actions. More specifically, especially for the detailed level, a very

specific protection mechanism is required to mitigate the actual attacks and this

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 24 Version 1.0 23 December 2021

Confidentiality: Public Distribution

mechanism is mentioned under the Mitigations section. During the identification of

mitigations process the information under Mitigation tab is collected for every defined

CAPEC-ID. If the CAPEC-ID in question is of standard and detailed level, the

information is directly available. On the other hand, a meta level attack pattern is more

abstract, avoiding information about specific methodologies, techniques,

implementations and protection mechanisms. Said attack pattern serves as

generalization of a more well-defined group of standard level attack patterns. In such a

case, mitigations that are mentioned in the corresponding standard level attack patterns

will be utilized for gathering the mitigation actions.

3.1.4 Generation of attack trees

The next process in the SESAME security methodology is the generation of attack trees,

including two different steps. During the first step the information that is disclosed by

the CAPEC repository is once again utilized. The CAPEC hierarchical classification

includes different types of relationships between two attack patterns, including

CanFollow and CanPrecede. The former gives information about the attacks that may

follow a given attack according to a specific attack pattern. The latter reveals attacks

that could have been conducted before a given attack, opening the way for it. Following

these relationships, we can create different graphs/trees, one for each possible known

attack pattern. An example of such a graph can be seen in Figure 9.

Figure 9: Example graph that can be produced utilizing the CanFollow relationship of CAPEC

Prerequisite for the creation of such a graph is the identification of each of the included

attacks due to vulnerabilities that have been previously found in the system in question.

The existence of specific vulnerabilities allows the identification of potential attacks.

Supposedly all the attacks mentioned in Figure 9 are already identified as potential

attacks, the first step of the generation of attack trees process with create the

corresponding graph based on the CanFollow relationship.

During a Dictionary-based Password Attack, an attacker tries all the words of a

dictionary as passwords of a specific user account. If the chosen password is in the

dictionary, the attack is successful and the attacker gains access. In case the broken

account is a Windows administrator account, the attacker could conduct a Windows

Admin Shares with Stolen Credentials attack. During such an attack, the attacker gets

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 25

Confidentiality: Public Distribution

access to Windows Admin Shares, which allow administrators to access all disk

volumes on a network-connected system and copy, write and execute files. This opens

the way for another attack, the Identify Shared Files/Directories on System. During this

attack, the adversary may locate and collect sensitive data through the use of shared

folders or drives between systems or system parts. Another possible usage of required

information is the design of routes in the network that serve other attacks. An attack that

can follow is the so-called Pull Data from System Resources. During this attack, an

adversary pulls data from resources that has access, such as files or memory. The

attacker does not need to know what the information that they pull is. The scanning of

the information can be done afterwards.

When this first step of generation of attack trees process finishes, a number of graphs,

showing how identified attacks can be combined, has been created.

During the second step utilization of attack tree templates is taking place. The attack

tree template are predefined attack trees. According to the general form of an attack

tree, the root of said trees is called goal of the attacker and the leaves are ways to

achieve the goal. Since there might be several attacker goals, there would be different

attack trees. Between the goal and the leaves, one can find sub-goals, which describe

achievements of the attacker that bring them closer to their goal. Such goals could

include the following:

• Control the movement of the robot

• Make the robot unresponsive (loss of availability)

• Steal/Change sensitive information (loss of integrity)

• Make a robot not to achieve a business goal

An example attack tree template not closely related to MRS, is depicted in Figure 10 for

demonstrative purposes. As it can be seen, the goal of the attacker in this case is the loss

of availability of a specific service. On the other hand, the leaves represent

vulnerabilities of the system that can be exploited and attacks that can be performed

based on these vulnerabilities.

CVE-2021-41450 corresponds to a vulnerability of certain HTTP/2 implementations.

According to this vulnerability, a flood of empty frames can be performed, leading to a

DoS attack. During such an attack, frames are sent with empty body and no end-of-

stream flag, while the receiver tries to process them consuming CPU. The actual

attacking machine that can be used for this attack can be a machine inside the system in

question that is taken under control due to another attack.

Additionally, CVE-2021-44026 corresponds to a vulnerability of the certain versions of

the Roundcube open-source webmail software. The email client is prone to SQL

injection attacks. Such an attack could be utilized by an adversary to take control of the

host in which Roundcube is deployed. Such an attack could lead to the convertion of the

host to a harmful bot, programmed to perform attacks to other machines in the system.

The two aforementioned vulnerabilities can be combined and create an attack tree

template. Such a template could be applied to a system where both these vulnerabilities

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 26 Version 1.0 23 December 2021

Confidentiality: Public Distribution

are present. Moreover, attack tree templates can be used for merging together graphs

that have been created in the first step of this process. If the vulnerabilities mentioned in

the leaves of a template are included in a graph, that graph could substitute the leaf. In

that way, more than one graph could replace leaves and be merged in an attack tree

template.

Figure 10: Example Attack Tree Template

The final attack tree that constitutes the output of this process, could include additional

information, such as the severity of the attack, its likelihood, the overall risk, monitoring

mechanisms for the detection of an attack, etc.

3.1.5 Generation of security EDDIs

The output of the generation of attack trees process serves as input in the generation of

security EDDIs process. During the latter, all the produced information is used for the

creation of the security EDDI.

The EDDI solution is the evolution of the DDI concept. It is an extended version, made

to include properties necessary for runtime deployment and addressing MRS related

issues. EDDI serves, at the same time, as a design-time dependability artefact, and as a

dynamic dependability management tool. The overall role of an EDDI is twofold

including i) online monitoring that observes and manages the system’s safety and

security, and ii) distributed communications among the different system components for

managing the dependability of a wider MRS system.

The EDDI’s features include the following:

• Event monitoring to monitor dependability-related inputs from the system;

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 27

Confidentiality: Public Distribution

• Runtime diagnostics to determine probable causes and possible consequences of

detected failure events;

• Dynamic risk prediction, to update design-time risk estimates with new information

based on the current system state;

• Mitigating actions and recovery planning, such as recommending the system enter a

safe failure state or a degraded mode to continue operation.

• Intercommunication with other connected EDDIs to both assure them of the system

dependability status and respond to errors reported by other EDDIs.

More details about the EDDI and the DDI concepts can be found in D4.1 ―Safety

analysis Concept‖, where an elaborated description of both can be found along with

their architectures.

At this stage, the produced EDDI serves as a repository of information about the system

in question regarding security. It can be used as evidence that the security requirements

for the individual parts of the system are being met.

The information that is produced by the security assessment must be conformed to the

ODE metamodel. Structured Assurance Case Meta-Model (SACM), a metamodel

specialised for the creation of structured system assurance cases, provides the ODE with

assurance case support. In our case, an assurance case incorporates the arguments and

evidence that support the claim that a given system or service is able to satisfy safety

and security requirements. The form such an assurance case can be expressed in is a

machine-readable model carrying information such as the scope of the system, the

operational context and the safety and/or security arguments [51].

The ODE includes a security-oriented package called Threat Analysis and Risk

Assessment (TARA). This package captures Risk Assessment that is based on Threat

Agents, which perform Attacks taking advantage of Assets with identified

Vulnerabilities. The performed attacks can be addressed by Security Capabilities of the

system, which are implemented by Security Controls [52]. The TARA package in the

form of a class diagram is depicted in Figure 11.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 28 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Figure 11: ODE TARA package

Information that is useful to the SESAME security assessment methodology includes

the CVSS score of a vulnerability, the importance of a system asset and the type of a

threat/attack. CVSS score depicts the severity of a vulnerability, which is one of the

indicators that determine how the vulnerability itself or attacks based on it, will be

confronted. The importance of a system asset specifies if its vulnerabilities are worth

threating. If the role of a specific component is not major regarding the overall

functionality of the system, then its unavailability, due to a security attack, may not be a

problem. Finally, the type of a threat/attack allows for the determination of the

mechanism that is going to be used in runtime to monitor it. This is very valuable

information as far as safety is concerned.

EDDIs can also incorporate information for communicating with runtime security

monitoring tools. Valuable input from tools such as IDSs, Anti-Viruses and BDSs can

be included in the security part of an EDDI, towards to definition of remedy actions. In

subsection 2.1.2.2, such monitoring tools have been already mentioned. IDSs are used

for the identification of malicious packets. In case of protection of known attacks, attack

signatures as used for the creation of rules that recognize specific patterns in the header

or body of the traffic packets. As far as the unknown attacks are concerned, anomaly

detection technique is used, detecting alteration in the traffic from the normal one. In

both cases, the detection of an attack creates alerts for the system administrator.

Moreover, Anti-Viruses are another type of protection that detects and removes

malware from the host. Additional functionality is the detection of unusual properties

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 29

Confidentiality: Public Distribution

due to known viruses, in incoming documents, such as emails, attachments, etc.

Breaches and side-channel attacks are detected by BDSs. Finally, anti-phishing

solutions protect from phishing attempts.

As it is described in D4.1 ―Safety Analysis Concept and Methodology for EDDI

development (Initial Version)‖, the deployment of an EDDI could be done two ways. It

could be synthesized into code and run on the target platform or, in a virtual machine-

style approach, the EDDI is executed by a target-specific native program.

3.1.6 Runtime security

As it is mentioned already, the produced information from the security assessment

process is incorporated in the security EDDI, transferring in this way, said information

to the runtime, to be used for the mitigation of threats. The prerequisite, in this case is

the monitoring of the security events that need to take place also during runtime. In

subsection 3.1.5 a number of potential security monitoring tools have been mentioned,

such as IDS, Anti-Virus and BDS. Our intention is to use an IDS to monitor the network

incoming malicious packets. Regarding the type of detection, a signature based IDS is

going to be used, where specific patterns are recognized in the headers or body of traffic

packets. There are some candidates that could be used, such as Snort, Suricata, Zeek,

OSSEC, etc. It is possible that our choice will be Snort due to our familiarity with the

tool, and its usage for the creation of components in other systems. Such a tool will

allow for the detection of attacks towards the system in question and the creation of

corresponding alerts.

The created IDS alerts then, can serve as input to a Business Rule Management System

(BRMS). Drools is such a BRMS that allows for the construction, maintenance, and

enforcement of business policies in an organization, application, or service. A Drools

production rule has the following generic structure:

rule name <attributes>*

when <conditional element>*

then <action>* end

The when part of the rule specifies a set of conditions, and the part then of the rule, a list

of actions. When a rule is applied, the Drools rule engine checks whether the rule

conditions (defined within the <conditional element> above) match with the facts in the

Drools Knowledge Base (KB), and if they do, it executes the actions of the rule. Rule

actions are typically used to modify the KB by inserting, retracting, or updating the

objects (facts) in it through the standard Drools actions ―insert‖, ―retract‖, and ―update‖,

respectively. The desired mitigation actions that fit better to the detection of an attack

can be expressed as Drools rules. A very simple example would be the detection of a

DoS attack that is launched from a specific IP (condition element), which leads to the

drop of all the incoming packets from that specific IP (action). These rules could also

serve as user-defined security policies. Such policies can set a security level and Drools

can indicate if the level is reached or not, during runtime.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 30 Version 1.0 23 December 2021

Confidentiality: Public Distribution

3.1.7 Safety and security

According to the definitions of security and safety given in [53], security refers to ―the

protection of a plant or machinery from unauthorised access from outside as well as the

protection of sensitive data from corruption, loss and unauthorised access from within‖,

while safety ―denotes the functional safety of plants, meaning the protection of people

and the environment against foreseeable threats that can stem from machinery‖.

Although these two concepts have different meanings, there is a strong correlation

between them regarding the robotic systems.

As we saw in the previous section with the common attacks to robotic systems, an

attack that ends up with manipulation of the robot parameters (control or calibration)

can cause human injuries during a human-machine interaction. On the other hand, the

existence of external safety sensors that need to be integrated into a robotic system,

creates additional attack surfaces to the system [54]. This complex relationship between

security and safety makes it crucial to take care both these aspects to avoid faulty and

unexpected robot behaviour.

As far as the EDDI implementation is concerned, information about types of threats

with safety implications should be included in the safety EDDI. Moreover, information

about the way said threats are monitored during runtime should be included. In that

way, safety runtime mechanisms could take under consideration security events, such as

detected ongoing attacks, and end up with some safety adaptation actions.

The security assessment process described herein, can create input for the safety

reasoning model. Security and safety are both important regarding the dependability

goal. Combing both security and safety assessment the dependability of a robotic

system can be achieved.

3.2 APPLYING SESAME METHODOLOGY

In this section, we will present how the SESAME security assessment can be applied to

the use case 2: Disinfecting hospital environments using robotic teams. This is an initial

approach that serves as proof-of-concept for the applicability of the proposed approach.

A more complete application of the SESAME security assessment, on all five use cases

of the project, will be presented in future deliverables such as D5.3 and D5.6 Tools for

Automated Security Analysis of MRS and for Production of EDDIs, initial and final

version, respectively.

As it is already presented in D1.1 Project Requirements, the SESAME use case partner

Locomotec uses a fully autonomous fleet of robots for disinfection of contact surfaces

and aerosols using UV-C as a known method to disinfect surfaces. In order to ensure

that persons are not over exposed with the maximum daily dose, a person detection

system is installed. Once a person is detected, the lamps on the UV-C robot turn off.

The main components of a robot are depicted in below.

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 31

Confidentiality: Public Distribution

Figure 12: Main software components of a Robot

As it can be seen in Figure 12, ROS is used on the robots as the build system and

communication middleware. Since this is just a test for the applicability of our

methodology, ROS is going to be used as the initial input from the system

administrator. If we wanted to perform the security assessment throughout, we should

have more details about all the deployed software.

Searching using the keyword ―ROS‖ in the two security knowledge repositories, CVE

and NVD, 39 different entries come out. However, not all of them are related to the

actual robot operating system. After the removal of vulnerabilities of other systems,

such as RuggedCom Rugged Operating System (whose acronym is also ROS), that

misleadingly appear in the search results, the remaining vulnerabilities are presented in

Table 1.

Table 1: Identified ROS-related vulnerabilities in CVE and NVD repositories

CVE-IDs CWE-IDs CWE Name

CVE-2016-10681 CWE-300 Channel Accessible by Non-Endpoint

CVE-2016-10681 CWE-310 Cryptographic Issues

CVE-2019-13445 CWE-190 Integer Overflow or Wraparound

CVE-2019-13465 CWE-noinfo NA

CVE-2019-13566 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buff-
er Overflow')

CVE-2019-19625 CWE-200 Exposure of Sensitive Information to an Unauthorized
Actor

CVE-2019-19627 CWE-200 Exposure of Sensitive Information to an Unauthorized
Actor

CVE-2020-10271 CWE-668 Exposure of Resource to Wrong Sphere

CVE-2020-10272 CWE-306 Missing Authentication for Critical Function

CVE-2020-10289 CWE-20 Improper Input Validation

CVE-2020-16124 CWE-190 Integer Overflow or Wraparound

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 32 Version 1.0 23 December 2021

Confidentiality: Public Distribution

As it can be seen, the CVE-IDs along with the corresponding CWE-IDs and the CWE

names are presented. The identified vulnerabilities (CVE-IDs) are coupled with

weaknesses (CWE-IDs), such as buffer overflow, missing authentication, exposure of

sensitive information, etc. Moreover, each of these weaknesses is related to specific

attack patterns, attacks that an adversary can conduct taking advantage of the said

weakness. As a result, the defined weaknesses lead to a number of potential attacks,

presented in Table 2.

Table 2: Identified ROS-related attack patterns in CAPEC repository

CWE-IDs CAPEC-IDs CAPEC Name

CWE-300 CAPEC-466 Leveraging Active Adversary in the Middle Attacks to Bypass
Same Origin Policy

 CAPEC-57 Utilizing REST's Trust in the System Resource to Obtain Sen-
sitive Data

 CAPEC-589 DNS Blocking

 CAPEC-590 IP Address Blocking

 CAPEC-612 WiFi MAC Address Tracking

 CAPEC-613 WiFi SSID Tracking

 CAPEC-615 Evil Twin Wi-Fi Attack

 CAPEC-662 Adversary in the Browser (AiTB)

 CAPEC-94 Adversary in the Middle (AiTM)

CWE-310 -

CWE-190 CAPEC-92 Forced Integer Overflow

CWE-120 CAPEC-10 Buffer Overflow via Environment Variables

 CAPEC-100 Overflow Buffers

 CAPEC-14 Client-side Injection-induced Buffer Overflow

 CAPEC-24 Filter Failure through Buffer Overflow

 CAPEC-42 MIME Conversion

 CAPEC-44 Overflow Binary Resource File

 CAPEC-45 Buffer Overflow via Symbolic Links

 CAPEC-46 Overflow Variables and Tags

 CAPEC-47 Buffer Overflow via Parameter Expansion

 CAPEC-67 String Format Overflow in syslog()

 CAPEC-8 Buffer Overflow in an API Call

 CAPEC-9 Buffer Overflow in Local Command-Line Utilities

 CAPEC-92 Forced Integer Over

CWE-200 CAPEC-116 Excavation

 CAPEC-13 Subverting Environment Variable Values

 CAPEC-169 Footprinting

 CAPEC-22 Exploiting Trust in Client

 CAPEC-224 Fingerprinting

 CAPEC-285 ICMP Echo Request Ping

 CAPEC-287 TCP SYN Scan

 CAPEC-290 Enumerate Mail Exchange (MX) Records

 CAPEC-291 DNS Zone Transfers

 CAPEC-292 Host Discovery

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 33

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-293 Traceroute Route Enumeration

 CAPEC-294 ICMP Address Mask Request

 CAPEC-295 Timestamp Request

 CAPEC-296 ICMP Information Request

 CAPEC-297 TCP ACK Ping

 CAPEC-298 UDP Ping

 CAPEC-299 TCP SYN Ping

 CAPEC-300 Port Scanning

 CAPEC-301 TCP Connect Scan

 CAPEC-302 TCP FIN Scan

 CAPEC-303 TCP Xmas Scan

 CAPEC-304 TCP Null Scan

 CAPEC-305 TCP ACK Scan

 CAPEC-306 TCP Window Scan

 CAPEC-307 TCP RPC Scan

 CAPEC-308 UDP Scan

 CAPEC-309 Network Topology Mapping

 CAPEC-310 Scanning for Vulnerable Software

 CAPEC-312 Active OS Fingerprinting

 CAPEC-313 Passive OS Fingerprinting

 CAPEC-317 IP ID Sequencing Probe

 CAPEC-318 IP 'ID' Echoed Byte-Order Probe

 CAPEC-319 IP (DF) 'Don't Fragment Bit' Echoing Probe

 CAPEC-320 TCP Timestamp Probe

 CAPEC-321 TCP Sequence Number Probe

 CAPEC-322 TCP (ISN) Greatest Common Divisor Probe

 CAPEC-323 TCP (ISN) Counter Rate Probe

 CAPEC-324 TCP (ISN) Sequence Predictability Probe

 CAPEC-325 TCP Congestion Control Flag (ECN) Probe

 CAPEC-326 TCP Initial Window Size Probe

 CAPEC-327 TCP Options Probe

 CAPEC-328 TCP 'RST' Flag Checksum Probe

 CAPEC-329 ICMP Error Message Quoting Probe

 CAPEC-330 ICMP Error Message Echoing Integrity Probe

 CAPEC-472 Browser Fingerprinting

 CAPEC-497 File Discovery

 CAPEC-508 Shoulder Surfing

 CAPEC-573 Process Footprinting

 CAPEC-574 Services Footprinting

 CAPEC-575 Account Footprinting

 CAPEC-576 Group Permission Footprinting

 CAPEC-577 Owner Footprinting

 CAPEC-59 Session Credential Falsification through Prediction

 CAPEC-60 Reusing Session IDs (aka Session Replay)

 CAPEC-616 Establish Rogue Location

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 34 Version 1.0 23 December 2021

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-643 Identify Shared Files/Directories on System

 CAPEC-646 Peripheral Footprinting

 CAPEC-651 Eavesdropping

 CAPEC-79 Using Slashes in Alternate Encoding

CWE-668 -

CWE-306 CAPEC-12 Choosing Message Identifier

 CAPEC-166 Force the System to Reset Values

 CAPEC-36 Using Unpublished Interfaces

 CAPEC-62 Cross Site Request Forgery

CWE-20 CAPEC-10 Buffer Overflow via Environment Variables

 CAPEC-101 Server Side Include (SSI) Injection

 CAPEC-104 Cross Zone Scripting

 CAPEC-108 Command Line Execution through SQL Injection

 CAPEC-109 Object Relational Mapping Injection

 CAPEC-110 SQL Injection through SOAP Parameter Tampering

 CAPEC-120 Double Encoding

 CAPEC-13 Subverting Environment Variable Values

 CAPEC-135 Format String Injection

 CAPEC-136 LDAP Injection

 CAPEC-14 Client-side Injection-induced Buffer Overflow

 CAPEC-153 Input Data Manipulation

 CAPEC-182 Flash Injection

 CAPEC-209 XSS Using MIME Type Mismatch

 CAPEC-22 Exploiting Trust in Client

 CAPEC-23 File Content Injection

 CAPEC-230 XML Nested Payloads

 CAPEC-231 Oversized Serialized Data Payloads

 CAPEC-24 Filter Failure through Buffer Overflow

 CAPEC-250 XML Injection

 CAPEC-261 Fuzzing for garnering other adjacent user/sensitive data

 CAPEC-267 Leverage Alternate Encoding

 CAPEC-28 Fuzzing

 CAPEC-3 Using Leading 'Ghost' Character Sequences to Bypass Input
Filters

 CAPEC-31 Accessing/Intercepting/Modifying HTTP Cookies

 CAPEC-42 MIME Conversion

 CAPEC-43 Exploiting Multiple Input Interpretation Layers

 CAPEC-45 Buffer Overflow via Symbolic Links

 CAPEC-46 Overflow Variables and Tags

 CAPEC-47 Buffer Overflow via Parameter Expansion

 CAPEC-473 Signature Spoof

 CAPEC-52 Embedding NULL Bytes

 CAPEC-53 Postfix, Null Terminate, and Backslash

 CAPEC-588 DOM-Based XSS

 CAPEC-63 Cross-Site Scripting (XSS)

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 35

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-64 Using Slashes and URL Encoding Combined to Bypass Valida-
tion Logic

 CAPEC-664 Server Side Request Forgery

 CAPEC-67 String Format Overflow in syslog()

 CAPEC-7 Blind SQL Injection

 CAPEC-71 Using Unicode Encoding to Bypass Validation Logic

 CAPEC-72 URL Encoding

 CAPEC-73 User-Controlled Filename

 CAPEC-78 Using Escaped Slashes in Alternate Encoding

 CAPEC-79 Using Slashes in Alternate Encoding

 CAPEC-8 Buffer Overflow in an API Call

 CAPEC-80 Using UTF-8 Encoding to Bypass Validation Logic

 CAPEC-81 Web Logs Tampering

 CAPEC-83 XPath Injection

 CAPEC-85 AJAX Footprinting

 CAPEC-88 OS Command Injection

 CAPEC-9 Buffer Overflow in Local Command-Line Utilities

The first column of the table includes the IDs of the weaknesses mentioned in Table 1.

The other two columns present the IDs and the names of the attack patterns that are

related to each of the weaknesses. Each of the included attacks are attacks that could be

conducted to our system. Some of these attacks are more abstract, while others provide

low level of details. As we described in subsection 2.2.3, attack patterns have different

types, with meta attack patterns being the most abstract without mentioning used

technologies or attack implementation, and detailed attack patterns being the most

specific with information of the attack techniques and the protection mechanisms. This

attack pattern classification makes the detailed attack patterns more valuable to this

process, especially for the identification of the mitigations part. Some of the mentioned

attacks may require the presence of additional technologies, other than just ROS.

However, since this is an example application of our approach and we do not have the

full picture of the testing system, we consider all the identified attacks as valid.

Although each of the attacks included in the table above is a threat for our system on its

own, some of them can be combined and create more complex attacks. Using the

CanFollow and CanPrecede relationships between the attack patterns four small graphs

are created, presented in Figure 13.

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 36 Version 1.0 23 December 2021

Confidentiality: Public Distribution

Figure 13: Combined attack patterns based on the CanFollow and CanPrecede relationships

These graphs group together attacks that can be conducted in sequence. One attack can

create the necessary prerequisites for another attack to happen.

The aforementioned graphs along with the individual identified attacks can be combined

in larger attack graphs that are created based on attack tree templates, described in

subsection 3.1.4. Such a tree that combines a subset of the attacks that we spotted based

on the vulnerabilities of ROS is depicted in Figure 14.

The tree includes five of the attacks identified in the previous steps of the security

assessment. If all of them or some of them are conducted, the final goal of the attacker

will be reached. The final goal of the attacker, regarding this attack tree, is for the target

robot to crash with a person. Following the opposite direction than the one depicted by

the arrows, an adversary has to publish to a specific ROS topic, responsible for

movement of the robot. There are two paths that the attacker can follow to be able to do

so. This is indicated in the attack tree with the OR node.

According to the first path, the one depicted in the left side, they can use the ROS CLI

tool. It can be done if the attacker manages to compromise a robot in the same network

with the target robot. CAPEC-615 and CAPEC-94 are two attacks that can lead to

exactly that. CAPEC-615 is the identifier of the Evil Twin Wi-Fi Attack. During such

an attack, the attacker installs Wi-Fi equipment that acts as a legitimate Wi-Fi network

access point. As soon as the target node connects, the exchanged traffic is intercepted,

captured, and analyzed. This attack leads the way for the CAPEC-94 attack. CAPEC-94

is the identifier for the Adversary in the Middle attack. During such an attack, the

attacker is placed between two communicating components, observing and possibly

altering the data before reaching their intended receiver. We should mention here, that

the presence of the former attack is not necessary for the attacker to accomplish their

goal. Of course, the latter attack has to be conducted successfully.

The second path, which is depicted on the right side of the tree, can be materialized if

the target robot exposes an API. As we already discussed in subsection 2.1, such APIs

allow for the control of a robot. In this case, the attacker can publish to the topic that

controls the movement of the target robot by compromising the exposed API. At this

point the attack tree is once again divided into two paths. According to the first path, the

CAPEC-8, Buffer Overflow in an API Call, is sufficient for achieving such a goal.

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 37

Confidentiality: Public Distribution

During such an attack, the adversary takes advantage of libraries or code vulnerable to

buffer overflow attacks and targets software that includes them. According to the

second path, CAPEC-85 and CAPEC-63, conducted in sequence, can have the same

outcome. CAPEC-85 is the identifier for the AJAX Footprinting attack. The most

common first step of an attacker is to try to find information about the targeted

environment to design their attack. Such a process is eased by the frequent

communication that is taking place during an Ajax conversation. The knowledge that is

gained is then used for conducting other attacks. CAPEC-63 refers to the Cross-Site

Scripting attack. During such an attack, an adversary incorporates scripts in content that

is going to be consumed by a browser, aiming the execution of the said script with the

target user’s privileges. Once again, CAPEC-63 could be conducted without CAPEC-85

preceding it. However, the combination of the two is a valid scenario.

Figure 14: Attack tree created by a template attack tree and identified attacks for the Locomotec use
case

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 38 Version 1.0 23 December 2021

Confidentiality: Public Distribution

The attack tree presented here, manages to combine attacks that were previously

identified as potential, based on the vulnerabilities of the target system. Among the

attacks included in the tree we have individual attacks along with one of the simple trees

that are automatically generated based on the CanFollow and CanPrecede relationships

of the CAPEC-IDs.

As it is mentioned in subsection 3.1.6, what follows the creation of the attack trees is the

transfer of the included information to the run time in the form of security EDDI. At

runtime security monitoring tools provide their output allowing for the initialization of

mitigation actions.

4. CONCLUSIONS

This deliverable introduces to the reader the problem of performing security assessment

to robotics systems. What makes it challenging is the fact that robotic systems of today

operate in a whole new environment, opened to the external world, communicating with

other systems, devices and services of doubtful confidence, operating in close proximity

to humans or even interacting with them. Said environment is in contrast with the

traditional industrial robot environment that used to be closed and trusted.

What follows is a presentation of the state-of-the-art techniques for security assessment,

mentioning security assessment approaches that have been conducted on robotic

systems, and security knowledge repositories that are used from these approaches.

Among those repositories RVD is mentioned as a dedicated database for robotic-

specific vulnerabilities.

Based on the above, trying to incorporate the state-of-the-art techniques and tools, the

SESAME security assessment methodology is introduced. To prove the applicability of

the proposed methodology, some preliminary outputs of the different methodology

processes are presented, taking under consideration the Robot Operating System, key

software for the Locomotec use case.

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 39

Confidentiality: Public Distribution

5. REFERENCES

[1] Ruffin White, Dr Christensen, I Henrik, Dr Quigley, et al. SROS: Securing ROS over the wire, in

the graph, and through the kernel. arXiv preprint arXiv:1611.07060, 2016.

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,

Andrew Y Ng, et al. ROS: an open-source Robot Operating System. In ICRA workshop on open

source software, volume 3, page 5. Kobe, Japan, 2009.

[3] David D Mascarenas, Jarrod McClean, Christopher J Stull, and Charles R Farrar. A Preliminary

Cyber-Physical Security Assessment of the Robot Operating System (ROS). Technical report, Los

Alamos National Lab (LANL), Los Alamos, NM (United States), 2013.

[4] Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria Zanchettin, and

Stefano Zanero. An Experimental Security Analysis of an Industrial Robot Controller. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 268–286. IEEE, 2017.

[5] International Organization for Standardization (ISO). Robots and robotic devices—safety require-

ments for industrial robots—part 2: Robot systems and integration, 2011.

[6] https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-

IndustrielleAutomatisierungstechnik, (accessed December 18, 2021).

[7] Siegfried Hollerer, Clara Fischer, Bernhard Brenner, Maximilian Papa, Sebastian Schlund, Wolf-

gang Kastner, Joachim Fabini, and Tanja Zseby. Cobot attack: a security assessment exemplified by a

specific collaborative robot. Procedia Manufacturing, 54:191–196, 2021.

[8] Gelei Deng, Yuan Zhou, Yuan Xu, Tianwei Zhang, and Yang Liu. An investigation of byzantine threats

in multi-robot systems. In 24th International Symposium on Research in Attacks, Intrusions and De-

fenses, pages 17–32, 2021.

[9] Global Times. Mainframe malfunction causes dozens of drones to crash into building in SW Chi-

na. https://www.globaltimes.cn/page/202101/1214165.shtml, 2021 (accessed December 18, 2021).

[10] RS Ross. Guide for conducting risk assessments NIST special publication 800-30 revision 1. US

Dept. Commerce, NIST, Gaithersburg, MD, USA, Tech. Rep, 2012.

[11] Patrick Engebretson. The basics of hacking and penetration testing: ethical hacking and penetra-

tion testing made easy. Elsevier, 2013.

[12] Fabián Cuzme-Rodríguez, Marcelo León-Gudiño, Luis Suárez-Zambrano, and Mauricio Domínguez

Limaico. Offensive security: Ethical hacking methodology on the web. In Conference on Infor-

mation Technologies and Communication of Ecuador, pages 127–140. Springer, 2018.

[13] Gurpreet K Juneja. Ethical hacking: A technique to enhance information security. International

Journal of Innovative Research in Science, Engineering and Technology, 2(12):7575–7580, 2013

[14] Hilary Berger and Andrew Jones. Cyber security & ethical hacking for SMEs. In Proceedings of the

The 11th International Knowledge Management in Organizations Conference on The changing face

of Knowledge Management Impacting Society, pages 1–6, 2016

[15] Susmit Panjwani, Stephanie Tan, Keith M Jarrin, and Michel Cukier. An Experimental Evaluation

to Detemine if Port Scans are Precursors to an Attack. In 2005 International Conference on De-

pendable Systems and Networks (DSN’05), pages 602–611. IEEE, 2005.

[16] Edwin Vattapparamban, Ismail Güvenç, Ali I Yurekli, Kemal Akkaya, and Selçuk Uluağaç. Drones

for smart cities: Issues in cybersecurity, privacy, and public safety. In 2016 international wireless

https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-IndustrielleAutomatisierungstechnik
https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-IndustrielleAutomatisierungstechnik
https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-IndustrielleAutomatisierungstechnik
https://www.globaltimes.cn/page/202101/1214165.shtml

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 40 Version 1.0 23 December 2021

Confidentiality: Public Distribution

communi- cations and mobile computing conference (IWCMC), pages 216–221. IEEE, 2016.

[17] Yan Hu, Hong Li, Hong Yang, Yuyan Sun, Limin Sun, and Zhiliang Wang. Detecting stealthy at-

tacks against industrial control systems based on residual skewness analysis. EURASIP Journal on

Wireless Communications and Networking, 2019(1):1–14, 2019.

[18] Kwang Joon Yang, Jinho Choi, Seungsoo Lee, and Seungwon Shin. MilSeg: SDN-based Military

Net- work Segregation Architecture. Technical report, EasyChair, 2019.

[19] CISCO. What is a firewall? https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-

firewall.html, (accessed December 18, 2021)

[20] Syeda Fatimav, Shahid Abdul Sattar, Syeda Fatima, and Syed Adil. A study on intrusion detection. In-

ternational Journal of Advanced Research in Engineering & Technology, 10, 03 2019.

[21] Gerald Post and Albert Kagan. Management tradeoffs in anti-virus strategies. Information & Man-

agement, 37(1):13–24, 2000

[22] Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M Zanchettin, and

Stefano Zanero. Rogue robots: Testing the limits of an industrial robot’s security. Trend Micro,

Politecnico di Milano, Tech. Rep, 2017.

[23] Victoria Drake. Threat Modeling. https://owasp.org/www-community/Threat_Modeling, (accessed

December 18, 2021)

[24] Suvda Myagmar, Adam J Lee, and William Yurcik. Threat modeling as a basis for security require-

ments. In Symposium on requirements engineering for information security (SREIS), volume 2005,

pages 1–8. Citeseer, 2005.

[25] Thomas Moulard, Juan Hortala, Xabi Perez, Gorka Olalde, Borja Erice, Odei Olalde, and David

May- oral. ROS 2 Robotic Systems Threat Model. https://design.ros2.org/articles/ros2_

threat_model.html, 2021 (accessed December 18, 2021).

[26] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[27] Adi Karahasanovic, Pierre Kleberger, and Magnus Almgren. Adapting threat modeling methods for

the automotive industry. In Proceedings of the 15th ESCAR Conference, pages 1–10, 2017.

[28] Rafiullah Khan, Kieran McLaughlin, David Laverty, and Sakir Sezer. STRIDE-based threat model-

ing for cyber-physical systems. In 2017 IEEE PES Innovative Smart Grid Technologies Confer-

ence Europe (ISGT-Europe), pages 1–6. IEEE, 2017.

[29] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. A descriptive study of Microsoft’s threat model-

ing technique. Requirements Engineering, 20(2):163–180, 2015.

[30] S Simeonova. Threat modeling in the enterprise, part 2: Understanding the process. Security Intelli-

gence, 2016.

[31] Kim Wuyts and Wouter Joosen. Linddun Privacy Threat Modeling: a tutorial. CW Reports, 2015.

[32] FIRST. Common Vulnerability Scoring System version 3.1. https://www.first.org/cvss/ v3-1/cvss-

v31-specification_r1.pdf, (accessed December 18, 2021).

[33] Nataliya Shevchenko, Timothy A Chick, Paige O’Riordan, Thomas P Scanlon, and Carol Woody.

Threat modeling: a summary of available methods. Technical report, Carnegie Mellon University

Software Engineering Institute Pittsburgh United . . . , 2018.

[34] CAIRIS. https://cairis.org/, (accessed December 18, 2021).

[35] Microsoft security development lifecycle threat modeling. https://www.microsoft.com/en-

us/securityengineering/sdl/threatmodeling, (accessed December 18, 2021).

https://design.ros2.org/articles/ros2_threat_model.html
https://design.ros2.org/articles/ros2_threat_model.html
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://cairis.org/
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

 D5.1 Security Analysis Concept and Methodology for EDDI development

23 December 2021 Version 1.0 Page 41

Confidentiality: Public Distribution

[36] Christian Schneider. Threatgile. https://threagile.io/, (accessed December 18, 2021).

[37] Tutamantic. https://www.tutamantic.com/, (accessed December 18, 2021).

[38] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen

Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, et al. Experimental

security analysis of a modern automobile. In 2010 IEEE symposium on security and privacy, pages

447–462. IEEE, 2010.

[39] David Mascarenas, Christopher Stull, and Charles Farrar. Escape and evade control policies for ensur-

ing the physical security of nonholonomic, ground-based, unattended mobile sensor nodes. In Un-

attended Ground, Sea, and Air Sensor Technologies and Applications XIII, volume 8046, page

80460G. International Society for Optics and Photonics, 2011.

[40] Gabriel Vasconcelos, Rodrigo Miani, Vitor Guizilini, and Jefferson Souza. Evaluation of DoS at-

tacks on commercial Wi-Fi-based UAVs. International Journal of Computer Network and Infor-

mation Security, 11:212, 04 2019.

[41] Yuan Xu, Gelei Deng, Tianwei Zhang, Han Qiu, and Yungang Bao. Novel denial-of-service at-

tacks against cloud-based multi-robot systems. Information Sciences, 576:329–344, 2021.

[42] Alberto Giaretta, Michele De Donno, and Nicola Dragoni. Adding salt to pepper: A structured secu-

rity assessment over a humanoid robot. In Proceedings of the 13th International Conference on

Availability, Reliability and Security, pages 1–8, 2018

[43] Yosef Ashibani and Qusay H Mahmoud. Cyber physical systems security: Analysis, challenges

and solutions. Computers & Security, 68:81–97, 2017.

[44] MITRE. Common Vulnerabilities and Exposures. https://cve.mitre.org/cve/, (accessed December

18, 2021).

[45] NIST. National vulnerability database. https://nvd.nist.gov/, (accessed December 18, 2021).

[46] MITRE. Common Weakness Enumeration. https://cwe.mitre.org/, (accessed December 18, 2021).

[47] Carlos Cardoso Galhardo, Peter Mell, Irena Bojanova, and Assane Gueye. Measurements of the

Most Significant Software Security Weaknesses. In Annual Computer Security Applications Confer-

ence, pages 154–164, 2020

[48] MITRE. Common Attack Pattern Enumerations and Classifications. https://capec.mitre.org/, (accessed

December 18, 2021).

[49] Víctor Mayoral Vilches, Lander Usategui San Juan, Bernhard Dieber, Unai Ayucar Carbajo, and

Endika Gil-Uriarte. Introducing the robot vulnerability database (rvd), 2021.

[50] Kenta Kanakogi, Hironori Washizaki, Yoshiaki Fukazawa, Shinpei Ogata, Takao Okubo, Takehisa

Kato, Hideyuki Kanuka, Atsuo Hazeyama, and Nobukazu Yoshioka. Tracing CAPEC attack patterns

from CVE vulnerability information using natural language processing technique. In Proceedings of

the 54th Hawaii International Conference on System Sciences, page 6996, 2021.

[51] Jan Reich, Daniel Schneider, Ran Wei Rasmus Adler, Marc Zeller Tim Kelly, Ioannis Sorokos, Joe

Guo, Georg Macher Christof Kaukewitsch, and Eric Armengaud. Digital Dependability Identities

and the Open Dependability Exchange Meta-Model. https://deis-

project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_meta-

model_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf, (accessed December 18,

2021).

[52] Jackson Wynn. Threat assessment and remediation analysis (TARA). https://www.mitre.

org/sites/default/files/publications/pr-2359-threat-assessment-and- remediation-analysis.pdf, 2014

(accessed December 18, 2021).

https://threagile.io/
https://www.tutamantic.com/
https://cve.mitre.org/cve/
https://nvd.nist.gov/
https://cwe.mitre.org/
https://capec.mitre.org/
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://www.mitre.org/sites/default/files/publications/pr-2359-threat-assessment-and-remediation-analysis.pdf
https://www.mitre.org/sites/default/files/publications/pr-2359-threat-assessment-and-remediation-analysis.pdf
https://www.mitre.org/sites/default/files/publications/pr-2359-threat-assessment-and-remediation-analysis.pdf

D5.1 Security Analysis Concept and Methodology for EDDI development

Page 42 Version 1.0 23 December 2021

Confidentiality: Public Distribution

[53] PILZ. White paper security. https://www.pilz.com/mam/pilz/content/uploads/wp_ securi-

ty_en_2018_10.pdf, 2018 (accessed December 18, 2021).

[54] Gilbert Tang and Phil Webb. Human–robot shared workspace in aerospace factories. In Human–

Robot Interaction, pages 72–79. Chapman and Hall/CRC, 2019.

https://www.pilz.com/mam/pilz/content/uploads/wp_security_en_2018_10.pdf
https://www.pilz.com/mam/pilz/content/uploads/wp_security_en_2018_10.pdf
https://www.pilz.com/mam/pilz/content/uploads/wp_security_en_2018_10.pdf

	1. Introduction
	1.1 Overview
	1.2 Security challenge

	2. The challenge of Security assessment
	2.1 Defining the problem
	2.1.1 Definitions
	2.1.2 Attacks
	2.1.2.1 Description of attacks
	2.1.2.2 Protection mechanisms
	2.1.2.3 Robot-specific attacks

	2.2 State of the art in security assessment
	2.2.1 Threat modeling and security assessment
	2.2.2 Security assessment in robotic systems
	2.2.3 Security knowledge repositories

	3. The SESAME Security Methodology
	3.1 Processes of the SESAME security methodology
	3.1.1 Identification of vulnerabilities
	3.1.2 Identification of potential attacks
	3.1.3 Identification of mitigations
	3.1.4 Generation of attack trees
	3.1.5 Generation of security EDDIs
	3.1.6 Runtime security
	3.1.7 Safety and security

	3.2 Applying SESAME methodology

	4. Conclusions
	5. References

