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EXECUTIVE SUMMARY  

This deliverable describes the proposed security assessment concept and methodology 

that is going to be used in the SESAME project. The aim of identifying the security 

flaws of multi-robot systems has been proven to be challenging due to the increased 

connectivity of the robots, the fact that they operate in proximity with humans, and the 

low realization of risks that robotic systems face.  

The state-of-the-art techniques, tools and repositories used for conducting security 

assessment are presented, investigating how they can be utilized for the definition of the 

SESAME security assessment concept and methodology. Security assessment in robotic 

systems is reviewed, trying to identify patterns in the used methodology.    

The steps of SESAME security assessment are listed, and a proof-of-concept 

application of the methodology based on a high-level description of one of the use-case 

robotic systems is presented. 
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LIST OF ABBREVIATIONS 

AiTB Adversary in the Browser 

AiTM Adversary in the Middle 
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NGFW next-generation 

ODE Open Dependability Exchange 

OSSTM Open Source Security Testing Methodology 

PUF Physically Unclonable Function  

ROS Robot Operating System 

RVD Robot Vulnerability Database 

RTT Round-Trip Time 

SSI Server Side Include 

SACM Structured Assurance Case Meta-Model 

UTM Unified Threat Management 

URL Uniform Resource Locator 

UAV Unmanned Aerial Vehicle 

VDP Velocity-Dependent Path 
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1. INTRODUCTION 

1.1 OVERVIEW 

Software and hardware vulnerabilities in the context of robotic systems are a fact with 

very serious potential consequences. Such vulnerabilities can trigger attacks that cause 

financial damage, exposure of sensitive data, loss of the customers’ trust, negative 

effects to critical goods, even human injuries and losses. Robotic systems have an active 

part in many industry sectors such as automotive, energy (traditional and alternative), 

food, pharmaceutical, aerospace, etc. All industry sectors are extremely important for a 

nation, and that is the reason why they can become targets of adversaries.  

The need for securing robotic systems is indisputable, however, the burden of 

materializing such a task should be carried out not only by the robot designers and 

operators but the standards creators, software developers, robot vendors, and security 

experts. Their goal is to make the process of exploiting robot vulnerabilities challenging 

and resource demanding 

1.2 SECURITY CHALLENGE  

Robotic systems of today face a whole new category of threats due to a number of 

newly adopted characteristics. They have been part of our daily life, integrated into cars, 

appliances, surveillance platforms, medical equipment, etc., operating in close 

proximity to humans. Moreover, they make use of software that does not incorporate 

security mechanisms for protection to malicious threats. Said robotic systems need to be 

connected to the outside world for monitoring and maintenance, creating APIs and 

introducing new attack surfaces. Finally, the administrators of such systems do not seem 

to be aware of the new risks due to the traditional industrial robot environment that used 

to be closed and trusted. Due to all these reasons, security assessment of robotic systems 

has become necessary but challenging.  

The rest of the deliverable is structured as follows. In the Challenge of Security 

Assessment section, the definition of the problem of security threats in robotic systems 

is described, listing the main reasons why such systems become attack targets. 

Moreover, the state-of-the-art techniques of conducting security assessment are 

presented.  Different kinds of attacks, protection mechanisms and the most common 

robot specific attacks are mentioned. The threat modelling process and different threat 

modelling models are described. Works found in the literature that present security 

assessment approaches on robotic systems are referenced. The last part of this section 

includes security knowledge repositories that are used in the proposed methodology. 

Section 3 presents the steps of the SESAME security methodology along with a proof-

of-concept application. Finally, in section 4 we present our concluding remarks. 
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2. THE CHALLENGE OF SECURITY ASSESSMENT 

2.1 DEFINING THE PROBLEM 

One dimension of the cybersecurity problem regarding robotic systems is their growing 

pervasiveness to our daily life. Some of the robotic domains that blend in with society 

are autonomous vehicles, surveillance platforms, robot-assisted surgery, home service 

robots, industrial automation, providing surface for attacks with real-world 

consequences and risks. For example, attacks to industrial robot arms can cause injuries, 

compromised driverless vehicles can even bring death to passengers and pedestrians, 

while an attack to a personal robot making use of IoT devices, could potentially become 

a threat for privacy and cause identity theft [1].  

Another aspect of the problem is the Robot Operating System (ROS), a robotic middle-

ware standard that allows for the creation of heterogeneous clusters of robots by 

offering communication among its members [2]. The great adoption of this standard due 

to its strengths such as the active community and the offered code reuse not only by 

researchers but also by the industry reveals its drawbacks such as network security, 

authorization and resource permissions.   

ROS as described in [1] was created based on a set of goals such as peer-to-peer 

communication, tools-based building, multi-lingual supporting, thin ideology, free and 

open source distribution. ROS is a meta-operating system for robots. Services provided 

by ROS include hardware abstraction, low-level device control, implementation of 

commonly-used functionality, message-passing between processes, and package 

management. One of its strongest features is the fact that it offers tools and independent 

libraries making its code reusable across multiple systems.  

ROS is expected to play an increasingly important role in robotics, especially now that 

the digitization of industrial systems is taking place. Most probably, ROS will be used 

in real-life tasks and not so much in pure research-oriented scenarios. These new 

potentials of ROS bring to the surface its serious security issues. Said issues must be 

tackled before the creation and distribution of commercial products that are based on 

ROS. In this section we are presenting the most well-known vulnerabilities of ROS that 

is it proven that can be exploited.  

A set of ROS drawbacks are presented in [1] including secure communication, access 

control, and process profiles. The XML-RPC protocol is used in ROS for the 

intercommunication of nodes. Messages are serialized with the help of libraries such as 

ROSTCP or ROSUDP and travel through IP sockets. However, this communication 

infrastructure lacks data encryption and integrity checking. As a result, ROS becomes 

an ideal target for attacks such as packet sniffing and man-in-the-middle. Content of 

packets can be altered and sensitive information can be stolen violating traditional 

security properties such as confidentiality and integrity. As far as access control is 

concerned, name-spaces are used for the definition of topics, services, names of nodes, 

and other locations in ROS’ graph. No access control is provided regarding actions that 

a particular node is allowed to perform such as i) to what topics to publish or subscribe, 

ii) what parameters to read or write, iii) what services to invoke, or iv) which ROS API 

to make use of. Consequently, security problems such as compromised nodes, mode 

unavailability and registration to unallowed name-spaces may rise. The last-mentioned 

drawback of ROS is the fact that its packages are created from different sources, 
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creating a large set of dependencies regarding vulnerabilities. Using MAC for ROS 

node processes could help protect from zero-day exploits.  

Several vulnerabilities known to the authors of [3] are presented in their work, including 

communications in plain-text and unprotected TCP ports. ROS node-to-node 

communication includes exchange of messages in plain-text allowing for easy 

interpretation of the message form by a malicious user. This can result in spoofing of 

fake messages. Another vulnerability of ROS is the fact that its internal communication 

is based on TCP ports, to allow for connected robots to be placed in a distributed way. 

The downside of this approach is that TCP ports are exposed offering, at the same time, 

little authentication.   

The need for security assessment of robotic systems is highlighted [4], mentioning some 

observations that the authors have made regarding industrial robots. The first 

observation is the increased connectivity of robotic systems that creates attack surfaces. 

Industrial robots used to work isolated inside controlled environments but due to their 

integration with ICT ecosystems, they are now connected to external networks and even 

to the Internet. This connectivity of industrial robots, as a way for controlling, 

monitoring and maintenance, is also included in ISO standards for robot systems 

integration [5]. There is a movement towards the creation of robot APIs that offer 

endpoints where user-defined requests end up and allow for the control of the robots. 

Administration and supervision of robots can be done even from portable devices such 

as smartphones [6]. 

Moreover, there is a trend to implement safety mechanisms creating programs and 

libraries moving away from hardware implementations of the past. This new kind of 

implementation, creates the severity of potential security incidents. If we combine this 

with the new generation of industrial robots that work closely to humans, we end up 

with a broader impact of security attacks on robotic systems that can easily threaten 

humans.  

Another mentioned observation is the low realization of risks that the robotic systems 

are exposed to. Authors in [4] conducted a survey and some of the results showed that: 

i) default safety measures are changed due to the introduced limitation (60% of the 

survey respondents), ii) access control is not applied to robots and robot-controllers 

(28% of the survey respondents), and iii) security assessment is not utilized as a security 

tool (76% of the survey respondents).  

It seems that the previous way that industrial robots used to offer their services, in 

environments that were closed and trusted, drove the robot manufactures to neglect 

necessary security mechanisms [7].   

The security problem becomes denser in distributed MRSs. In such setups if one robot 

becomes the target of an attack, it can potentially affect other robots or even the whole 

system. The compromised robot can act as bad robot aka bad bot, in the sense that will 

perform malicious automated tasks at the adversary’s will, starting attacks to other 

system components including robots or robot-controllers. A representative example is 

mentioned [8], where 100 drones crashed into a building while a light show was taking 

place in Chongqing, China. The problem started from the mainframe control [9].  
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Security assessment of robotic systems, meaning the process of identifying, assessing 

and treating security risks to be compliant with the system security requirements, seems 

to be a necessity. Said process includes recognition of assets and security holes, 

identification of corresponding threats able to compromise the system assets, and 

discovery of protection means taking under consideration the calculated risk.  

2.1.1 Definitions 

In this section we list a few of the most common terms along with their definitions that 

we encounter in security assessment [10]. 

Threat: Any event with the potential to impact operations and assets through a system 

via unauthorized access, destruction, disclosure, or modification of information, and/or 

denial of service. 

Vulnerability: A weakness in a system that could be exploited by a threat source. 

Impact: The magnitude of harm that can be expected from an unauthorized disclosure, 

modification or destruction of information or system availability. 

Likelihood: A weighted risk factor of the probability that a given threat source is 

capable of exploiting a given vulnerability or set of vulnerabilities. 

Intrusion: ―A security event, or a combination of multiple security events, that 

constitutes a security incident in which an intruder gains, or attempts to gain, access to a 

system or system resource without having authorization to do so.‖
1
 

Breach: ―The loss of control, compromise, unauthorized disclosure, unauthorized 

acquisition, or any similar occurrence where: a person other than an authorized user 

accesses or potentially accesses personally identifiable information; or an authorized 

user accesses personally identifiable information for another than authorized purpose.‖
2
 

System Characterization: Identify applications, hardware, operating systems and 

endpoint devices. 

Threat Source Identification: Identify sources of potential threats. Threats are 

categorized in:  

 Human threats e.g. malware, data breaches 

 Environmental threats e.g. power failures  

 Natural threats e.g. storms, fires. 

Vulnerability Identification: Identify exploitable weaknesses such as unpatched 

systems, weak security policies, poor password practises etc. 

Control Analysis: Identify security controls such as firewalls, antivirus tools as well as 

alarms and locks. 
                                                           
1
 https://csrc.nist.gov/glossary/term/intrusion 

2
 https://csrc.nist.gov/glossary/term/breach 
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Likelihood Determination: Assess the probability of a security breach based on the 

identified threats, vulnerabilities and security controls. There are three tiers: 

 High 

 Medium 

 Low 

Impact Analysis: Estimate the damage that will occur from a security breach in terms 

of value of hardware or data, reputation damage, loss of confidentiality, cost of repair. 

Risk Determination: Quantify risk based on the likelihood of a threat combined with 

the vulnerability and the value of a specific asset. 

2.1.2 Attacks 

There is an unofficial methodology (can be considered a presumed model) that the 

attackers follow in order to achieve a successful attack that will lead them to their final 

goal regarding the manipulation of the target system. The first step of this methodology 

is the one called reconnaissance including gathering of information. Social engineering 

and the use of some automated tools, such as searchers, lead to the extraction of 

desirable information such as IP addresses or URLs (Uniform Resource Locator) [11] 

[12] [13] [14].  

Continuing with the second step, gathered information is used for the discovery of hosts 

in a network and any available information such as operating system, active ports, 

services, and applications in a procedure is called scanning. A port scan will reveal 

ports of a network that are open or closed and services that are available. The 

discovered services are potentially having vulnerabilities that an attacker could take 

advantage of and start an attack [15]. The third and final step is the launching of the 

attack itself. 

One way to categorize the attacks that target robotic systems is the one presented in [7]. 

The type of the attack (digital, physical) and its location (local, remote) create four 

combinations (local-digital, remote-digital, local-physical and remote-physical) where 

each attack can be assigned.  

Local-digital attack examples are the installation of malware via a USB drive that can 

be attached physically on a robot. Another example is a DoS attack that is launched 

from a node hosted locally. There is a plethora of remote-digital attacks, since they can 

be conducted easier, including remote DoS, remote compromise of a system 

vulnerability, phishing attempts, malware sent via emails or remote services, etc. Local-

physical attacks include theft and vandalism of the system in question or even hostile 

hardware installation. Finally, remote-physical attacks can be conducted on-site with the 

help of remote-controlled devices, such as drones.  

2.1.2.1 Description of attacks 

Due to the very nature of robotic systems, the fact that a large number of robotic nodes 

are interconnected, allows for a large number of different attacks. The most common 

ones will be presented in this section. 
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DoS/DDoS attack: A Denial-of-Service (DoS) attack aims to shut down a system or a 

network making its services unavailable to its users. This is performed by overloading 

the network with a great number of automatically produced service requests or by 

making it crash. Said requests are not to be served but their aim is to flood the target, 

consume its resources slowing it down or even making it inaccessible. A DoS attack 

makes use of only one attacker but if more of them cooperate then another type of 

attack is conducted, a Distributed Denial-of-Service (DDoS) attack. The victim is 

common and it is attacked by several locations simultaneously. The created number of 

attacking locations enables the attacker to execute a really troublemaking attack and 

hide its true location.   

Spoofing attack: During a spoofing attack the attacker pretends to be an authorized 

user or device and aims to bypass the access control system and get access to the system 

in question, steal data or money, or spread malware. Email spoofing, URL spoofing, IP 

spoofing and DNS spoofing are some examples. Regarding robotic systems, such an 

attack could make a robot behave unexpectedly. For example, a GPS spoofing attack, 

can send fake GPS coordinates to the control unit of a drone and force it to change its 

original trajectory [16]. 

Man-in-the-middle attack: A man-in-the-middle attack is conducted when the attacker 

positions themselves between a user and an application, allowing them to manipulate 

the exchanged traffic. As we have already discussed, ROS, probably the most 

widespread operating system for robots, does not offer encrypted and secure 

communications. The information included in these communications can be control 

instructions, software updates or applications. Manipulating traffic in such ways could 

allow for insertion of malicious commands that could be executed by the target-robot, 

creating even safety issues. 

Tampering attack: A tampering attack modifies parameters that are exchanged 

between a client and a server. In that way, different kind of data, such as credentials, 

permissions or quantity of ordered products can be manipulated. In the context of 

robotics, manipulated data can be calibration parameters of a robot or production logic 

[4].  

Replay attack: A replay attack occurs when a secure network communication is 

intercepted and then it is delayed or resent to the receiver. The advantage of this type of 

attack is that there is no need for decryption of the message itself. The attack is 

performed by just resending the original message. The replay attack can be performed 

asynchronously even after the end of the original communication. A successful Replay 

attack allows adversaries to imitate authenticated users and try to take over their 

accounts. 

Fault injection attack: A fault injection attack, regarding categorization, falls into the 

physical attacks. Its aim is to inject a fault in a system in order to bypass security 

mechanisms, change the normal behavior of the system or extract sensitive information. 

The injection of the fault has to be precise and it can be done using techniques such as 

voltage glitching, clock glitching, laser injection, electromagnetic (EM) injection. Such 

an attack can be performed via the hardware or the software. 

Sybil attack: A Sybil attack is an attack observed in peer-to-peer networks, where a 

node pretends to be multiple regular nodes at the same time, creating fake identities. In 
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a peer-to-peer network, that can lead to the manipulation of the whole network, by 

gaining the majority of the influence.  

Jamming attack: A jamming attack is a type of DoS attack that is observed in wireless 

sensor networks (WSNs) where IEEE 802.15.4 standard is used. During such an attack, 

the attacker interferes traffic into the communication channel degrading the 

performance of the network and disrupting the communication of the regular users.   

HW Backdoor attack: One way of accomplishing a Hardware backdoor attack is by 

physically code to hardware. Sometimes it can be done during the manufacturing 

process. Said code is triggered by an event and can be used for bypassing authentication 

mechanisms or encryption processes. Hardware backdoor’s impact is considered very 

severe since it cannot be detected by conventional security mechanisms.  

Remote access Trojan attack: Such an attack includes a malware program that is 

downloaded at the target computer in disguise, as part of another program or as an email 

attachment. This malware makes use of a backdoor to take administrative rights to 

compromise the target. One common tactic then is to distribute RATs to other 

computers and create a botnet of compromised hosts.  

Stealthy attack: An attack is characterized as stealthy if the attack process remains 

hidden. This can be achieved by manipulating the target system in such a way that its 

original behavior is not altered. Authors in [17] claim that these attacks present a 

regularity and can be detected. 

SQL Injection attack: The target of such an attack is web applications and SQL 

databases that can be accessed via the Internet. Known vulnerabilities of said 

applications are explored to inject code in the form of SQL statements. These 

statements run on the database and can steal, alter or delete the database contents. 

Except for the loss of the actual data, the loss of customer trust should also be taken 

under consideration. 

Cross-Site Scripting (XSS): XSS is another code injection attack that targets web 

applications. XSS includes the injection of malicious content to an application 

(JavaScript HTML), targeting cookies or other information regarding session. The usual 

aim is the redirection of the user to a malicious website, where the attacker can steal 

sensitive information such as usernames, passwords, bank credentials etc.     

2.1.2.2 Protection mechanisms 

The large variety of attacks dictates the existence of protection mechanisms that are able 

to protect a system against known attacks. In this section, we briefly present such state-

of-the-art security solutions.   

Network segmentation: According to this protection mechanism, a network is divided 

into a set of smaller and isolated subnetworks. This division has multiple advantages 

since it i) minimizes the attack surface exposing only the dedicated to services 

subnetwork, ii) makes harder for the attacker to locate resources that are scattered in 

many different subnetworks, iii) isolates architecture components that are considered 

vulnerable such as outdated ones, iv) makes it easier to enforce access policies to 

targeted subnetworks, and v) minimizes the damage in case of a successful attack. A 

very popular way to achieve network segmentation is by creating rules that dictate 
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communications among hosts and services. Authors in [18] propose MilSeg, an 

architecture that segregates military networks in the SDN environment in order to 

minimize various attack vectors and spread of damage from the attacks. 

Firewall: Firewalls is a security mechanism that monitors inbound and outbound 

network traffic. A set of rules allows for deciding which traffic is blocked or not. A 

common position for a firewall is the gateway of a system where the traffic that is 

exchanged with other networks is filtered, fencing the internal trusted network from the 

external untrusted ones. A firewall can be implemented as hardware or software. There 

are several types of firewall including proxy firewalls, stateful inspection firewalls, 

Unified threat management (UTM) firewalls, next-generation (NGFW) firewalls, threat-

focused NGFW, and virtual firewall [19]. 

Intrusion Detection System (IDS): IDS can also be implemented as software or 

hardware and filters traffic trying to identify malicious packets. There are three main 

types of IDS: host based, network based and application based [20]. Host based IDSs 

are deployed on hosts and monitor incoming and outgoing traffic. Such hosts are 

systems that carry sensitive data, cannot be patched or have other reasons for extra 

security measures. Network based IDSs are placed in key points in networks, such as 

the gateway, and filter the traffic that is exchanged among the different devices of the 

network. Application based IDSs try to identify intrusions by filtering traffic on 

application specific protocols, such as SQL protocol. In all of the above, and in case an 

intrusion is detected, the administrator is alerted. Moreover, there are two different 

types of detection that is used by IDS: signature based and anomaly detection based. 

The former has an advantage regarding the known attacks, since they can be detected 

with great precision. The way it is done is by recognizing specific patterns in the 

headers or body of traffic packets. On the other hand, anomaly detection based IDSs are 

better at discovering unknown attacks. Said attacks alter the traffic making it different 

from the norm. Machine learning techniques, such as Tree classifiers, Bayesian 

Clustering, Deep Learning are used for the detection of unknown attacks.  

Intrusion Prevention System (IPS): IPSs extend in a way IDSs since they incorporate 

an additional functionality, the prevention. They are in place to prevent detected 

intrusions and to do so, they need to be deployed in line. Actions that are taken include 

packet drop, traffic blockage, and connection reset.  

Anti-Virus: Anti-Viruses are programs that are installed in hosts aiming to detect and 

remove malware. The technique that is used is the comparison of malware signatures 

with the installed software in the host. Additional types of anti-Viruses are able to check 

incoming to host documents such as mail, attachments, etc. trying to identify unusual 

properties due to known viruses [21].  

Breach Detection System (BDS): BDSs are able to detect breaches or side-channel 

attacks that are not found by any other security mechanism, by focusing on the traffic 

that is exchanged inside a given network. A set of techniques are used for the detection 

of breaches such as traffic analysis, risk assessment, safe marked traffic, data policy 

understanding and violation reporting. There are three main way for the BDS to be 

deployed: i) out of band, where the traffic is mirrored to the BDS for scanning, ii) in 

line, where the IDS is deployed between the network in question and the WAN 

interface, and iii) deployment on endpoint machines.  
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Anti-phishing: Such a security solution protects from phishing attempts by detecting 

and blocking them in internet content. In that way, unauthorized access to sensitive data 

is avoided. Additional services include analysis of how data has been stolen, data 

recovery and protection from additional hacking.  

Unified Threat Management (UTM): UTM can be a hardware or software solution 

that combines different security mechanisms at a single point. In that way, the end client 

does not need to be supplied with several security tools that each provides one security 

function.  

Encryption: During encryption, a corresponding algorithm, called cipher, takes data, 

also called plaintext, as input and creates encoded data that is called ciphertext. The 

produced encrypted data can be decrypted only by authorized parties. There are two 

types of encryption, symmetric and asymmetric. The former uses the same key for 

encryption and decryption of the plain text. In case said key can be kept safe or there is 

no need to be transferred somewhere else, a symmetric type of encryption can be used. 

On the other hand, for encryption of communication between server and client, the 

asymmetric encryption is used, where the encryption is used with a key that can be 

revealed, public key, while the decryption is done with private keys that only authorized 

parties have.   

Penetration Testing: Penetration testing is the process of launching simulated 

cyberattacks making use of strategies and tools that are meant for exploitation. The aim 

of penetration testing is the identification of flaws that could be the starting point of 

attacks. In that way, the security protection mechanisms and policies can be defined. 

Another way that penetration testing is useful is for the testing of the security policy 

effectiveness, the compliance to regulations, and the overall security awareness. The 

ultimate goal is to discover the weaknesses of a given system before they are discovered 

by adversaries that could take advantage of them.  

In case of a network, a penetration testing process could reveal unused ports, firewall 

rules that need to be corrected or fine-tuned, and other security flaws. In case of web 

applications, buffer overflow, SQL injection, cross-site scripting, and other 

vulnerabilities may be revealed. Other types of attacks that can be performed during a 

penetration testing are those that try to steal or alter sensitive information from a 

system.  

There are different strategies that are used, including external, internal, blind, double 

blind, and targeted testing. Types of tools that are used during such a process, include 

port scanners, vulnerability scanners, application scanners and web application 

assessment proxies.   

2.1.2.3 Robot-specific attacks 

There are some types of attacks that seem to be common as far as industrial robot 

systems are concerned. The frequency of occurrence of said types of attack is due to the 

existence of architectural commonalities and standards. Based on 4 desired robot 

properties, named sensor reading, control logic execution, movement precision, and 

human safety, authors in [22] created corresponding classes of attacks: 
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Altering the control-loop parameters. During such an attack, kinematics and 

configuration parameters are modified in a way that the robot’s reference signal, 

position and speed, center of gravity and mass, and breaks are changed causing 

unexpected movements. The result of this attack could lead to faulty products. 

Tampering calibration parameters. This attack can change the copy of the calibration 

parameters of a robot that is stored in the controller. The outcome can be very similar to 

the previous attack or if the controller checks the position and speed of the robot, the 

whole procedure will be put in a halt. In that way, an attack that tampers calibration 

parameters can have the effects of a DoS attack.  

Tampering with the production logic. An attacker could take advantage of known 

vulnerabilities and change different program tasks including the whole process of 

product manufacturing.  

Altering user-perceived robot state. In the case where a UI acts as an intermediate for 

the user of the robot to be informed about the robot’s state, an attack that modifies said 

UI could be critical. During such an attack, the user is not aware about the true state of 

the robot and may make wrong decisions regarding safety issues, causing even human 

injuries.  

Altering the robot state. Such an attack may alter the true state of a robot without the 

controller or the operator noticing it. This is due to the fact that some features, such as 

the mode the robot works on, can be changed via software. For example, an operator 

that believes that a robot works on automatic mode may decide to walk really close to it. 

At the same time an attacker changes the mode to manual and makes the robot move in 

a way that injures the operator.  

We should mention here that all the aforementioned attacks can lead to safety 

implications due to the close proximity of the robots in contemporary robotic systems to 

the human operators.   

2.2 STATE OF THE ART IN SECURITY ASSESSMENT 

2.2.1 Threat modeling and security assessment 

The selection of security measures is not just a collection of security technologies at 

random. A security designer must take under consideration the design of the whole 

system in question. Ideally, the security concerns should be tackled as soon as possible, 

incorporating the design of the security in the system design process.   

Threat modeling is the process of identifying, communicating and understanding the 

threats of a given system, and then defining countermeasures to mitigate the effects of 

said threats that bring to the system [23]. Threat modeling investigates a system through 

the adversary’s perspective and helps the designers to predict potential attacks, 

answering questions like what the system needs to protect and from whom. The benefits 

of threat model are of great value regardless of the stage of development of the system 

[24].   

The main goals are to reveal critical issues and challenges during implementing security 

and to define and document the security requirements of a given system. The 
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identification of assets, vulnerabilities, potential attacks, and mitigations are very 

important. Threat modeling is a structured process and includes steps such as system 

description, architecture dataflow, architecture components and their trust boundaries, 

identification of system entry points, threat analysis and determination of 

countermeasures.  

The high-level threat modeling steps mentioned by the Open Web Application Security 

Project (OWASP) are the following [23]: 

 Decompose the application. Information about the application is gathered and 

documented including dependencies, entry/exit points, assets, trust levels, and 

data flow. 

 Determine and rank threats. Threats are categorized and STRIDE
3
/DREAD

4
 

threat models are used for ranking and risk estimation. 

 Determine Countermeasures and Mitigation. Countermeasures are identified 

based on the categorization of threats with STRIDE and Application Security 

Frame (ASF).  

 Complementing code review. The outcome of the threat modeling process 

allows code analysis to be focused on components with higher risk. 

Moreover, the corresponding steps followed to perform threat analysis to ROS2 robotic 

systems are: [25] 

 System description. The actors, assets and entry points are defined. 

 Architecture dataflow diagram. The communications between all the 

components of the robot are represented in dataflow diagram. 

 Robot application components and trust boundaries. Trusted and untrusted 

components are identified.  

 Threat analysis and modeling. STRIDE and DREAD are used for the creation of 

a table with the whole produced information. 

Currently there is a large number of threat modeling methods with different 

characteristics. Some of them are more abstract promoting granularity, while others are 

people-centric. Of course, they can be combined during a threat modeling process to 

produce a more comprehensive understanding of the potential threats. Some of these 

methods are described below: 

 STRIDE: STRIDE is considered the most mature among the threat modeling 

methods. It was invented in 1999 and adopted by Microsoft in 2002, while 

variants have been created since then [26] [27] [28]. Initially, the modeling of 

the system in question is taking place, while data flow diagrams are used for 
                                                           
3
 Spoofing identity, Tampering with data, Repudiation threats, Information disclosure, Denial of service and Elevation 

of privileges (STRIDE) 
4
 Damage Potential, Reproducibility, Exploitability, Affected Users, Discoverability (DREAD) 
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depiction of entities and boundaries. The next step is the identification of threats. 

The name of the method is an acronym meaning Spoofing identity, Tampering 

with data, Repudiation, Information disclosure, Denial of service, and Elevation 

of privilege, and is used as a mnemonic for threat discovery. Figure 1 includes 

the definition of the corresponding threats and the properties that each threat 

category violates. Available threat checklists and tables help this procedure [29].  

 

Figure 1: Threat categories of STRIDE from [33] 

According to [29], STRIDE has a low rate of false positives and a high rate of 

false negatives. DREAD, a similar method developed by Microsoft, stands for 

Damage potential, Reproducibility, Exploitability, Affected users, 

Discoverability. Values are assigned to the five categories, while an average 

value is calculated representing the overall risk of the system. However, 

DREAD is not used by Microsoft since 2008 due to inconsistent ratings. 

 PASTA: PASTA stands for Process for Attack Simulation and Threat Analysis 

and is a threat model that incorporates a risk and impact analysis defining 

threats, application vulnerabilities and priorities for countermeasures. It includes 

seven stages of assessment, each one building on the top of the previous, 

presented in Figure 2.   

As it is described in [30], PASTA allows threat modeling to create security 

output that is taken under consideration in many aspects of a business, such as 

architecture, development, operations, even governance. In that way security is 

put at the center of the entire business.  

   

 LINDDUN: LINDDUN stands for Linkability, Identifiability, Non-Repudiation, 

Detectability, Disclosure of Information, Unawareness, Non-Compliance, it 

works as a mnemonic and the focus of this method is privacy. The followed 

steps are depicted in Figure 3, below.  

As it can be seen, the first step includes a DFD that illustrates the system data 

flow, while the second step allows for mapping specific threats to the system 

components. The third step of the ―problem space‖ part of the method includes 

the identification of scenarios where the discovered threats can occur. Steps 2 

and 3 are conducted based on questionnaires that help with the identification of 

threats and scenarios. At the ―solution space‖ part the mitigation specification 

takes place [31].  
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Figure 2: Stages of assessment in PASTA from [33] 

 

Figure 3: Process steps in LINDDUN from [31] 

 CVSS: CVSS is an acronym meaning Common Vulnerability Scoring System. It 

is a framework that comprises information about software vulnerabilities, such 

as characteristics that are constant or evolve over time and their severity. CVSS 

consists of three metric groups, named Base, Temporal and Environmental. 

Based on the former, a score is produced ranging from 0 to 10. The other groups 

can modify this score [32]. The three metric groups are depicted in Figure 4, 

below. 
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Figure 4: Metric groups of CVSS from [32] 

The score produced by the Base metric group represents those characteristics of 

a vulnerability that are constant, having in mind the worst possible impact that 

said vulnerability could have among different deployments. Temporal metrics 

adjust the output of the Base group based on characteristics that may change 

such as availability. Finally, this assessment may also change based on the 

environmental metrics that are based on the very specific characteristics of a 

given environment.    

There is a plethora of models that are available out there, each focusing on different 

aspects, depending on the involved placeholders, the available resources, the previous 

experience, the desirable outcome. Some additional models that are worthy to be 

mentioned are Persona non Grata, Security Cards, hTMM, Quantitative TMM, Trike, 

VAST Modelling, and OCTAVE [33].   

Some worth mentioning, open-source threat modelling tools are: 

 Cairis: Cairis [34] is an open-source web-based tool. The tool allows for 

creation of attackers’ profiles. It identifies attack patterns and defines mitigation 

actions.    

 Microsoft Threat Modelling Tool: Microsoft Threat Modelling Tool [35] uses 

the STRIDE methodology. Flow diagrams can be created, while threats and 

corresponding mitigations are offered. There is a focus on Azure and Windows 

services.   

 OWASP Threat Dragon: OWASP Threat Dragon is an open-source web-based 

tool. Its output include flow diagrams, lists of potential threats and mitigations. 

The main advantage of this tool is its rule engine. 

 Threagile: Threagile [36] is an open-sourced tool kit that is code-based. The 

output is available in many formats. It is YAML-based, which makes it easy for 

the threat model to be manipulated.   

 Tutamantic: Tutamantic [37] is a flexible tool that allows for changes when the 

design of the system changes. There is a Beta version that is free. It uses 

taxonomies that are considered common, such as STRIDE, CWE and CAPEC, 

and its output is available in different consumable forms.   
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2.2.2 Security assessment in robotic systems 

As we have already mentioned, robots are invading many aspects of our daily life 

including transportation, surveillance systems, home assistance, remote medical 

services, goods production, energy networks, etc. The fact that robots couple different 

types of sensors and actuators, human to machine interfaces, information processing and 

mobility, introduces new vulnerabilities that can be exploited and cause economic 

damage or even safety problems. 

There are many works in the literature that present security analysis of different kinds of 

robotic systems, trying to identify cyber-attacks and their impacts. In this section we 

present some of these works. 

Exploring attacks to robotic systems 

Authors in [3] employ a cyber-physical honeypot that makes use of ROS and features 

sensors and actuators allowing for a new set of vulnerabilities and exploits to be 

discovered. The exploitation of the honeypot vulnerabilities was a contest challenge for 

the attendees of the DEF CON 20 conference. The conducted security exploits included 

false ROS messages injection. One of the learned lessons of this work is that the 

security of cyber-physical systems demands knowledge in cyber and physical security, 

and in robotics.  

The work in [38] demonstrates hacking a modern automobile affecting systems such as 

digital dash, door locks, brakes, and engine control component. Additionally, it was 

shown in [39] that based on the Precision Immobilization Technique, the physical 

security of a car-like sensor node can be compromised in a relatively simple way. 

Authors in [40] present an evaluation of DoS attacks in two different Unmanned Aerial 

Vehicles (UAVs), produced by three DoS attacks Tools. They perform a comparison 

between the vulnerabilities of the two UAVs and also introduce a tool, able to run inside 

ROS, for mitigating availability issues such as losing the control of the drone. Their 

methodology for conducting the attacks included the following steps: a) Establish a 

connection between the pilot and UAVs (AR.Drone and SOLO); b) Pilot sends 

legitimate commands to UAVs under normal conditions; c) Establish a connection 

between attacker and UAVs; d) The attacker makes reconnaissance attacks on UAVs; e) 

Attacker launches a DoS attack towards UAVs. The proposed tool calculates the 

Euclidean distance between the starting position (takeoff position) and the current 

position of the UAV and when it reaches the 10-meter limit, the base station emits a 

beep sound. According to their evaluation, the attacks resulted in lower average frame 

rate of the UAVs’ cameras (dropping from 30 to almost 5) and larger average network 

latency. Moreover, the use of a more powerful UAV showed that better hardware and 

software configuration is not a solution to said attacks. Distributed Denial of Service 

attacks could be utilized in future work. Additionally, the introduced solution for 

mitigating availability issues affects the efficiency of the UAVs. 

A model to represent the performance of multi-robot systems introducing the Velocity-

Dependent Path (VDP) that affects the workload completion times is introduced in [41]. 

In that way, critical execution paths and function nodes that determine the performance 

of an MRS are determined. Their focus is on cloud-robotic systems, where the 

computational tasks are migrated to the cloud to preserve task execution time and 
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battery life of the robots. Moreover, they identify possible attack strategies and design 

three novel DoS attacks (Network Contention, Micro-architecture Contention, Direct 

Delay), where just one malicious node can compromise the entire cloud-robotic 

platform. The evaluation showed that during a Network contention attack: a) the Round-

Trip Time (RTT) of each message is significantly increased. When the flooding rate is 

25 Hz, RTT of the victim message becomes 7.32ms (normal RTT is 2.24ms), with 

maximum RTT 193ms; b) about 35% messages are dropped due to the network 

contention in the wireless router (flooding rate 20 Hz). A micro-architecture contention 

attack, where a malicious publisher floods dummy messages to subscriber nodes in the 

same machine, increases the CPU utilization of the subscriber nodes making them 

deprived of the CPU of other nodes. Finally, the performed Parameter manipulation 

attack increased the processing time. The focus of the paper is on ROS since this is still 

the most popular choice for products and companies. However, the newly introduced 

ROS2 could possible mitigate said attacks. As future work, the authors mention their 

intention to extend their evaluation to ROS2. 

Security assessment methodologies 

Authors in [42], present a structured methodology to conduct a security assessment over 

Pepper, a commercial human-shaped social robot. Pepper is designed to infer basic 

human emotions and react accordingly. It can be operated through ROS, one of the most 

widespread middleware in robotics, and is equipped with a number of sensors such as 

microphones, HD cameras, 3D depth and touch sensors. According to the presented 

methodology, security assessment is conducted in two phases, i) an automated one 

including a port scan and vulnerability scanning with OpenVAS and OWASP ZAP, and 

ii) a manual one including traffic analysis with Wireshark, brute force attack with Hydra 

and investigation of uncommon open ports. Said assessment revealed a number of 

security flaws that may enable credentials spoofing, stored data steal, hacking of 

connected devices. The authors propose countermeasures for every detected 

vulnerability and point out the general trend of shallowness regarding the security status 

of robots and IoT devices, especially those that are meant to interact with people. 

A security assessment for the Franka Emika Panda is performed in [7]. The authors 

analyse potential attack surfaces along with possible impacts on safety-relevant 

parameters. Systematic penetration test is conducted based on the Open Source Security 

Testing Methodology (OSSTM) and the OWASP testing guide. Countermeasures are 

proposed for each of the found vulnerability to prevent corresponding cyber-attacks. 

Although security tools were used (Nmap, Wireshark, Nessus, Burp Suite Pro), they 

majority of the identified vulnerabilities was not pinpointed by said tools automatically. 

The findings revealed that the web application of the Franka Emika Panda was the 

attack surface with the most vulnerabilities. Moreover, the authors showed that a 

security attack can affect both human safety and manufacturing process. 

An analysis of the security issues of Cyber Physical Systems (CPS) is presented in [43]. 

The authors make use of a three-layer architecture: perception, transition and 

application layer. Different security issues in each layer leads to different threats and the 

need for different security solutions. According to the presented analysis, it can be 

concluded that the most common security targets at the perception layer are the sensors 

and the actuators; data leakage, DoS, control or destruction at the transmission level; 

while privacy disclosure and unauthorized access at the application level. Although 
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CPSs have security needs of their own due to heterogeneous involved technologies, 

general IT security techniques could be used to some extent. Suggested CPS focused 

solution include Physically Unclonable Function (PUF) for the unique identification of 

heterogeneous connected devices, dealing with integrity and authenticity. On the other 

hand, PUF cannot be widely adopted since not all devices can implement PUF 

technology. Moreover, an Identity-Based encryption technique that uses small key sizes 

could be a solution for privacy issues, without burdening devices with limited resources. 

Other suggested solutions are a unified data processing standard that allows for data 

compression and data fusion techniques, and utilization of the cloud for computation 

processes. 

Authors in [4] present an experimental security analysis of an industrial robot controller. 

They define an attacker model to express attackers of industrial robots based on their 

goals, their level of access to the system, and their capabilities. Regarding the former, 

four potential goals are mentioned: Production Outcome Altering, Physical Damage, 

Production Plant Halting and Unauthorized Access. Access to the system can be gained 

either from a network attacker, since controllers of robots are sometimes internet 

exposed or remotely accessible from vendors, or from a physical attacker, which can 

plug a device into the robot controller’s openly accessible ports. As far as the attacker 

capabilities are concerned, attackers:  a) can be insiders or general cybercriminals; b) 

must be able to become familiar with the structure of the target robot; and c) access just 

target firmware or both firmware and hardware (full-fledged deployment), in order to 

discover vulnerabilities and test exploits. Moreover, robot-specific attack classes are 

identified including Control Loop Alteration, User-perceived Robot State Alteration, 

Robot State Alteration, Production Logic Tampering, Calibration Parameters 

Tampering. In order to present the feasibility of said attacks a reference robot was used. 

The range of the attacks were limited due to costs and robot security and safety 

regulations. Additionally, only standard features of the reference robot were taken under 

consideration without considering optional equipment that potentially increases the 

attack surface. 

2.2.3 Security knowledge repositories   

There are many repositories, lists, directories that enclose information about 

vulnerabilities, weaknesses, bugs, etc. This section includes the description of those that 

are taking part in the SESAME security assessment process.  

Common Vulnerabilities and Exposures (CVE). CVE [44] is actually a list of 

computer security flaws, cybersecurity vulnerabilities, and can be used for searching or 

incorporated into products and services for free. Each of these flaws is assigned an 

identifier called CVE-ID, which is used as a dependable way to uniquely recognise 

vulnerabilities. CVE-IDs are issued by CVE Numbering Authorities (CNA), group of IT 

vendors, security companies and research organizations. Well-known vendors that are 

considered CNAs are Adobe, Apple, Cisco, Linux, Google, HP, IBM, Microsoft, 

Mozilla, Oracle, and Red Hat. Reports of CVEs can be done by almost anyone, even a 

simple user of a product. In any case, when information about a vulnerability reaches a 

CNA, a CVE-ID is assigned and a description is created. The final step is the 

vulnerability to be posted on the CVE website. The sequence of steps in the lifecycle of 

a CVE record are depicted in Figure 5. 
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Figure 5: CVE record lifecycle
5
 

The information that is disclosed for every vulnerability includes: description, 

references to code repositories, assigning CNA, record date, etc. There is no 

information about risks, impacts, countermeasures, since this part of other databases 

such as National Vulnerability Database. CVE has the role of a baseline used among 

security advisories, bug trackers and databases to communicate with each other.  

However, not all vulnerabilities are reported to CVE. The WhiteSource’s 2018 Annual 

Report on the State of Open Source Vulnerabilities Management, reported that only 

86% of existing vulnerabilities are added in the CVE list. According to that, 14% of 

vulnerabilities are reported somewhere else. Even though CVE list does not contain all 

the possible vulnerabilities, it is the most popular repository used for vulnerability 

documentation.    

National Vulnerability Database (NVD). NVD [45] was created in 2000 with a 

different name (Internet categorization of Attacks Toolkit) and later got its present form. 

Its goal is to offer additional information about a CVE-ID of the CVE list. Said 

information includes a description, a severity score according to CVSS (Critical, High, 

Medium, Low), references to countermeasures, a list of relevant Common Weakness 

Enumerations, known affected software configurations and change history. NVD is 

fully synchronized with the CVE list and the provided information can be used for 

detection and fix of published known vulnerabilities. 

Common Weakness Enumeration (CWE). CWE [46] is essentially a list of weakness 

types regarding software and hardware. This list is the output of a community effort that 

creates very specific definitions for each of these types, trying to distinct each one from 

the others while describing it in an adequate way. The members of the community are 

able to submit software and hardware weaknesses in the CWE Research Discussion 

List.  

The information that is disclosed for every weakness includes: short and extended 

description, alternate terms, relationships with other weaknesses (ChildOf, ParentOf, 

CanFollow, MemberOf), modes of introduction, application platforms, common 

consequences with specific scope (confidentiality, integrity, availability), likelihood of 

exploit, demonstrative examples, observed examples, potential mitigation, detection 
                                                           
5
 https://www.cve.org/About/Process 
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methods, membership in specific CWE views, references in publications, and content 

history (submission, modifications). 

CWE offers a number of different representations of the available list of weaknesses, 

based on concepts that are used in software development, hardware design, and 

research. Moreover, there are more views such as ―CWE top 25 (year)‖, ―OWASP top 

ten (year)‖, ―Architectural concepts‖. These view offer subsets of the list that are 

connected to a specific factor. It is also worthy of mentioning that CWE calculations are 

strongly biased in favour of frequency over severity as pointed out by authors in [47] 

Common Attack Pattern Enumeration and Classification (CAPEC). CAPEC [48] is 

a classification and dictionary of known attacks. Common attack patterns are described 

helping the understanding of how weaknesses of systems can be exploited. New content 

is constantly added by enterprises and public participation aiming the disclosure of 

attack patterns to the security community. This information can be valuable for anyone 

who wants to strength their defences.  

Attack patterns are organized hierarchically. On the top of the hierarchy a number of 

different categories can be found. Under these categories, meta patterns follow, and then 

we find standard patterns. Finally, patterns with more details may be the children of the 

standard patterns. Said hierarchy can be seen in Figure 6 for the Cross-Site Tracing 

attack. In this specific example, Domains of attack is the view, Software is the top 

category, Exploitation of Trusted Identifiers is the meta pattern, Session Hijacking is the 

standard pattern, and Cross Site Tracing is the detailed one. As a result, the hierarchy of 

the detailed pattern Cross Site Tracing, looks like this: 

(V) Domains of attack  (C) Software  (M) Exploitation of Trusted Identifiers  (S) 

Session Hijacking  (D) Cross Site Tracing 

The usage of this hierarchy and naming convention, easies the discovery of attack 

patterns and the definition of mitigation actions.  

 

Figure 6: Hierarchy of Cross Site Tracing attack in CAPEC 

The information that is disclosed for each attack includes: description, likelihood of 

attack, severity, relationships with other attacks (ChildOf, ParentOf, etc.), execution 

flow of the attack, prerequisites, required skills regarding the attacker, required 

resources, indicators that the attack has been performed, consequences, mitigations, 
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example instances, weaknesses that are related to the attack, possible mappings to other 

taxonomies, and content history.  

Robot Vulnerability Database (RVD). RVD includes robot related vulnerabilities and 

bugs that are referred to software and hardware. The aim is to record and categorize 

robot related flaws. RVD is available at GitHub and offers tools that ease its 

management. Robot Vulnerability Scoring System (RVSS) is used for the rating of the 

included vulnerabilities.  

3. THE SESAME SECURITY METHODOLOGY 

3.1 PROCESSES OF THE SESAME SECURITY METHODOLOGY 

As it is already described in section 2.2.1, the threat modeling process allows for the 

specification of the security design and collection of security technologies that will be 

adopted by a system, taking under consideration the system itself and its own security 

requirements. The security assessment that will be conducted in the context of 

SESAME is strongly influenced by the threat modeling process and adopts its main 

principles. More specifically, SESAME security assessment follows a structured series 

of steps, which overlaps in many cases with the highly structured process of threat 

modeling and its clearly specified steps, based on the chosen model. Diagram in Figure 

7 depicts the steps of our methodology, including inputs, outputs, additional external 

resources, and processes.  

Although the high-level steps described in the next sections constitute a general 

approach, the key for a successful application of the proposed methodology to 

individual MRSs with specific requirements is the detailed description of the system in 

question. Concepts such as the assets importance and the trust boundaries that contain 

assets, can describe the unique security requirements of a system. Moreover, the 

identified vulnerabilities and their combination makes each system a different use case, 

making the SESAME security methodology to produce varying outputs (potential attack 

scenarios along with mitigations).  

3.1.1 Identification of vulnerabilities 

The security assessment starts with the description of the system. As it is indicated by 

the threat modeling process, the description of the system in question, in terms of 

architecture components, assets, entry points and trust boundaries, is necessary. This 

information is gathered by the system administrator. The intention in this step of the 

security assessment is a UI to be created where said information is collected by filling in 

forms and answering corresponding questionnaires.  

Based on the system description, all the deployed programs, libraries and services are 

pinpointed. User’s input triggers the process during which free databases for the known 

vulnerabilities of the recognized software are used, with CVE catalog to be the first 

choice for this purpose. However, since our target systems are MRSs, RVD directory, 

dedicated to disclosure of bugs, weaknesses and vulnerabilities in robots, is considered 

a necessary addition. In that way, the complexity and special characteristics of robots, 

not reflected in other vulnerability lists, is taken under consideration. RVD aspires to 

add to the vulnerability disclosure with robotics specific information [49]. A parser 

searches said vulnerability directories and, using the name and version of each software 
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present in the system in question, spots the associated vulnerabilities. Each of those 

vulnerabilities are uniquely identified by the CVE identifiers (CVE-IDs). A list of such 

CVE-IDs is the output of this process.  The said vulnerability directories are constantly 

updated with information regarding newly discovered vulnerabilities with a method 

described in section 2.2.3. Inherently the approach followed here is also not static as it 

will be in sync with the updated directories. 

The process that was just described is also offered as functionality by a set of automated 

tools, called vulnerability scanners. Following the same principle; they are scanning a 

given network and/or subnetworks for available services and then use open vulnerability 

databases to discover known vulnerabilities. OpenVAS, OPENSCAP, OWASP ZAP are 

some of the open-source options. For the sake of completeness, the SESAME security 

assessment includes the use of such scanning tools, since the provider of the system 

information may not be aware of some services that are running in devices, which are 

part of the system, and have some known vulnerabilities. Of course, the prerequisite in 

this case is that the system must be up and running, otherwise the vulnerability scanning 

tools cannot produce an output.  
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Figure 7: SESAME security methodology 
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3.1.2 Identification of potential attacks 

The output of both processes of identification of vulnerabilities is a set of CVE-IDs, 

which serves as input to the next step of the security assessment, the identification of 

the potential attacks to the system. CWE catalog, a list of software and hardware 

weakness types, is an additional input for the process during this step. CWE plays the 

role of common language for security tools. Due to the wider acceptance of CWE it is 

used as a stepping stone between the spotted vulnerabilities and the potential attacks. 

Finally, CAPEC, a dictionary of identifiers for attack patterns that are used by attackers 

to take advantage of weaknesses, is used as input. 

 

Figure 8: Discovering potential attacks from known vulnerabilities – from [50] 

Figure 8 depicts the route from the pinpointed vulnerabilities of a system software to the 

information of the corresponding potential attacks, showing how all the aforementioned 

directories are connected with each other.  

CWE, as we already mentioned, is used as a connection point between CVE and 

CAPEC. ―Weakness Enumeration‖ is one of the fields in the description of a given 

vulnerability. In this field a list of all the weakness types, in the form of CWE-IDs, that 

are related with the specific vulnerability is provided. Moreover, the description of 

every weakness type (CWE-ID) includes a field called "Related Attack Patterns", 

presenting the attack patterns (CAPEC-ID) used for the exploitation of the 

corresponding weakness. In this way, it is possible to trace a list of CAPEC-IDs from a 

single CVE-ID. This process is repeated for every of the discovered system 

vulnerabilities, meaning that its output is a number of different sets of CAPEC-IDs, one 

for each discovered CVE-ID.  

Information related to a CAPEC-ID that is highly valuable to us, includes a description 

in natural language, relationship with other attacks, prerequisites for the attack to be 

performed, and mitigation actions.   

3.1.3 Identification of mitigations 

In subsection 2.2.3 we have already described the hierarchical classification of CAPEC 

and the corresponding levels. CAPEC-IDs in standard and detailed levels usually 

include mitigation actions. More specifically, especially for the detailed level, a very 

specific protection mechanism is required to mitigate the actual attacks and this 
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mechanism is mentioned under the Mitigations section. During the identification of 

mitigations process the information under Mitigation tab is collected for every defined 

CAPEC-ID. If the CAPEC-ID in question is of standard and detailed level, the 

information is directly available. On the other hand, a meta level attack pattern is more 

abstract, avoiding information about specific methodologies, techniques, 

implementations and protection mechanisms. Said attack pattern serves as 

generalization of a more well-defined group of standard level attack patterns. In such a 

case, mitigations that are mentioned in the corresponding standard level attack patterns 

will be utilized for gathering the mitigation actions.  

3.1.4 Generation of attack trees 

The next process in the SESAME security methodology is the generation of attack trees, 

including two different steps. During the first step the information that is disclosed by 

the CAPEC repository is once again utilized. The CAPEC hierarchical classification 

includes different types of relationships between two attack patterns, including 

CanFollow and CanPrecede. The former gives information about the attacks that may 

follow a given attack according to a specific attack pattern. The latter reveals attacks 

that could have been conducted before a given attack, opening the way for it. Following 

these relationships, we can create different graphs/trees, one for each possible known 

attack pattern. An example of such a graph can be seen in Figure 9.  

 

Figure 9: Example graph that can be produced utilizing the CanFollow relationship of CAPEC 

Prerequisite for the creation of such a graph is the identification of each of the included 

attacks due to vulnerabilities that have been previously found in the system in question. 

The existence of specific vulnerabilities allows the identification of potential attacks. 

Supposedly all the attacks mentioned in Figure 9 are already identified as potential 

attacks, the first step of the generation of attack trees process with create the 

corresponding graph based on the CanFollow relationship.  

During a Dictionary-based Password Attack, an attacker tries all the words of a 

dictionary as passwords of a specific user account. If the chosen password is in the 

dictionary, the attack is successful and the attacker gains access. In case the broken 

account is a Windows administrator account, the attacker could conduct a Windows 

Admin Shares with Stolen Credentials attack. During such an attack, the attacker gets 
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access to Windows Admin Shares, which allow administrators to access all disk 

volumes on a network-connected system and copy, write and execute files. This opens 

the way for another attack, the Identify Shared Files/Directories on System. During this 

attack, the adversary may locate and collect sensitive data through the use of shared 

folders or drives between systems or system parts. Another possible usage of required 

information is the design of routes in the network that serve other attacks. An attack that 

can follow is the so-called Pull Data from System Resources. During this attack, an 

adversary pulls data from resources that has access, such as files or memory. The 

attacker does not need to know what the information that they pull is. The scanning of 

the information can be done afterwards.  

When this first step of generation of attack trees process finishes, a number of graphs, 

showing how identified attacks can be combined, has been created.  

During the second step utilization of attack tree templates is taking place. The attack 

tree template are predefined attack trees. According to the general form of an attack 

tree, the root of said trees is called goal of the attacker and the leaves are ways to 

achieve the goal. Since there might be several attacker goals, there would be different 

attack trees. Between the goal and the leaves, one can find sub-goals, which describe 

achievements of the attacker that bring them closer to their goal. Such goals could 

include the following:  

• Control the movement of the robot 

• Make the robot unresponsive (loss of availability) 

• Steal/Change sensitive information (loss of integrity)  

• Make a robot not to achieve a business goal 

An example attack tree template not closely related to MRS, is depicted in Figure 10 for 

demonstrative purposes. As it can be seen, the goal of the attacker in this case is the loss 

of availability of a specific service. On the other hand, the leaves represent 

vulnerabilities of the system that can be exploited and attacks that can be performed 

based on these vulnerabilities.  

CVE-2021-41450 corresponds to a vulnerability of certain HTTP/2 implementations. 

According to this vulnerability, a flood of empty frames can be performed, leading to a 

DoS attack. During such an attack, frames are sent with empty body and no end-of-

stream flag, while the receiver tries to process them consuming CPU. The actual 

attacking machine that can be used for this attack can be a machine inside the system in 

question that is taken under control due to another attack.  

Additionally, CVE-2021-44026 corresponds to a vulnerability of the certain versions of 

the Roundcube open-source webmail software. The email client is prone to SQL 

injection attacks. Such an attack could be utilized by an adversary to take control of the 

host in which Roundcube is deployed. Such an attack could lead to the convertion of the 

host to a harmful bot, programmed to perform attacks to other machines in the system.  

The two aforementioned vulnerabilities can be combined and create an attack tree 

template. Such a template could be applied to a system where both these vulnerabilities 
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are present. Moreover, attack tree templates can be used for merging together graphs 

that have been created in the first step of this process. If the vulnerabilities mentioned in 

the leaves of a template are included in a graph, that graph could substitute the leaf. In 

that way, more than one graph could replace leaves and be merged in an attack tree 

template.  

 

 

Figure 10: Example Attack Tree Template 

The final attack tree that constitutes the output of this process, could include additional 

information, such as the severity of the attack, its likelihood, the overall risk, monitoring 

mechanisms for the detection of an attack, etc.   

3.1.5 Generation of security EDDIs 

The output of the generation of attack trees process serves as input in the generation of 

security EDDIs process. During the latter, all the produced information is used for the 

creation of the security EDDI.  

The EDDI solution is the evolution of the DDI concept. It is an extended version, made 

to include properties necessary for runtime deployment and addressing MRS related 

issues. EDDI serves, at the same time, as a design-time dependability artefact, and as a 

dynamic dependability management tool. The overall role of an EDDI is twofold 

including i) online monitoring that observes and manages the system’s safety and 

security, and ii) distributed communications among the different system components for 

managing the dependability of a wider MRS system. 

The EDDI’s features include the following: 

• Event monitoring to monitor dependability-related inputs from the system; 
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• Runtime diagnostics to determine probable causes and possible consequences of 

detected failure events; 

• Dynamic risk prediction, to update design-time risk estimates with new information 

based on the current system state; 

• Mitigating actions and recovery planning, such as recommending the system enter a 

safe failure state or a degraded mode to continue operation. 

• Intercommunication with other connected EDDIs to both assure them of the system 

dependability status and respond to errors reported by other EDDIs. 

More details about the EDDI and the DDI concepts can be found in D4.1 ―Safety 

analysis Concept‖, where an elaborated description of both can be found along with 

their architectures.  

At this stage, the produced EDDI serves as a repository of information about the system 

in question regarding security. It can be used as evidence that the security requirements 

for the individual parts of the system are being met. 

The information that is produced by the security assessment must be conformed to the 

ODE metamodel. Structured Assurance Case Meta-Model (SACM), a metamodel 

specialised for the creation of structured system assurance cases, provides the ODE with 

assurance case support. In our case, an assurance case incorporates the arguments and 

evidence that support the claim that a given system or service is able to satisfy safety 

and security requirements. The form such an assurance case can be expressed in is a 

machine-readable model carrying information such as the scope of the system, the 

operational context and the safety and/or security arguments [51]. 

The ODE includes a security-oriented package called Threat Analysis and Risk 

Assessment (TARA). This package captures Risk Assessment that is based on Threat 

Agents, which perform Attacks taking advantage of Assets with identified 

Vulnerabilities. The performed attacks can be addressed by Security Capabilities of the 

system, which are implemented by Security Controls [52]. The TARA package in the 

form of a class diagram is depicted in Figure 11.  
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Figure 11: ODE TARA package 

Information that is useful to the SESAME security assessment methodology includes 

the CVSS score of a vulnerability, the importance of a system asset and the type of a 

threat/attack. CVSS score depicts the severity of a vulnerability, which is one of the 

indicators that determine how the vulnerability itself or attacks based on it, will be 

confronted. The importance of a system asset specifies if its vulnerabilities are worth 

threating. If the role of a specific component is not major regarding the overall 

functionality of the system, then its unavailability, due to a security attack, may not be a 

problem. Finally, the type of a threat/attack allows for the determination of the 

mechanism that is going to be used in runtime to monitor it. This is very valuable 

information as far as safety is concerned.   

EDDIs can also incorporate information for communicating with runtime security 

monitoring tools. Valuable input from tools such as IDSs, Anti-Viruses and BDSs can 

be included in the security part of an EDDI, towards to definition of remedy actions. In 

subsection 2.1.2.2, such monitoring tools have been already mentioned. IDSs are used 

for the identification of malicious packets. In case of protection of known attacks, attack 

signatures as used for the creation of rules that recognize specific patterns in the header 

or body of the traffic packets. As far as the unknown attacks are concerned, anomaly 

detection technique is used, detecting alteration in the traffic from the normal one. In 

both cases, the detection of an attack creates alerts for the system administrator. 

Moreover, Anti-Viruses are another type of protection that detects and removes 

malware from the host. Additional functionality is the detection of unusual properties 
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due to known viruses, in incoming documents, such as emails, attachments, etc. 

Breaches and side-channel attacks are detected by BDSs. Finally, anti-phishing 

solutions protect from phishing attempts.  

As it is described in D4.1 ―Safety Analysis Concept and Methodology for EDDI 

development (Initial Version)‖, the deployment of an EDDI could be done two ways. It 

could be synthesized into code and run on the target platform or, in a virtual machine-

style approach, the EDDI is executed by a target-specific native program. 

3.1.6 Runtime security 

As it is mentioned already, the produced information from the security assessment 

process is incorporated in the security EDDI, transferring in this way, said information 

to the runtime, to be used for the mitigation of threats. The prerequisite, in this case is 

the monitoring of the security events that need to take place also during runtime. In 

subsection 3.1.5 a number of potential security monitoring tools have been mentioned, 

such as IDS, Anti-Virus and BDS. Our intention is to use an IDS to monitor the network 

incoming malicious packets. Regarding the type of detection, a signature based IDS is 

going to be used, where specific patterns are recognized in the headers or body of traffic 

packets. There are some candidates that could be used, such as Snort, Suricata, Zeek, 

OSSEC, etc. It is possible that our choice will be Snort due to our familiarity with the 

tool, and its usage for the creation of components in other systems. Such a tool will 

allow for the detection of attacks towards the system in question and the creation of 

corresponding alerts.  

The created IDS alerts then, can serve as input to a Business Rule Management System 

(BRMS). Drools is such a BRMS that allows for the construction, maintenance, and 

enforcement of business policies in an organization, application, or service. A Drools 

production rule has the following generic structure: 

rule name <attributes>* 

when <conditional element>* 

then <action>* end 

The when part of the rule specifies a set of conditions, and the part then of the rule, a list 

of actions. When a rule is applied, the Drools rule engine checks whether the rule 

conditions (defined within the <conditional element> above) match with the facts in the 

Drools Knowledge Base (KB), and if they do, it executes the actions of the rule. Rule 

actions are typically used to modify the KB by inserting, retracting, or updating the 

objects (facts) in it through the standard Drools actions ―insert‖, ―retract‖, and ―update‖, 

respectively. The desired mitigation actions that fit better to the detection of an attack 

can be expressed as Drools rules. A very simple example would be the detection of a 

DoS attack that is launched from a specific IP (condition element), which leads to the 

drop of all the incoming packets from that specific IP (action). These rules could also 

serve as user-defined security policies. Such policies can set a security level and Drools 

can indicate if the level is reached or not, during runtime.  
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3.1.7 Safety and security  

According to the definitions of security and safety given in [53], security refers to ―the 

protection of a plant or machinery from unauthorised access from outside as well as the 

protection of sensitive data from corruption, loss and unauthorised access from within‖, 

while safety ―denotes the functional safety of plants, meaning the protection of people 

and the environment against foreseeable threats that can stem from machinery‖. 

Although these two concepts have different meanings, there is a strong correlation 

between them regarding the robotic systems. 

As we saw in the previous section with the common attacks to robotic systems, an 

attack that ends up with manipulation of the robot parameters (control or calibration) 

can cause human injuries during a human-machine interaction. On the other hand, the 

existence of external safety sensors that need to be integrated into a robotic system, 

creates additional attack surfaces to the system [54]. This complex relationship between 

security and safety makes it crucial to take care both these aspects to avoid faulty and 

unexpected robot behaviour. 

As far as the EDDI implementation is concerned, information about types of threats 

with safety implications should be included in the safety EDDI. Moreover, information 

about the way said threats are monitored during runtime should be included. In that 

way, safety runtime mechanisms could take under consideration security events, such as 

detected ongoing attacks, and end up with some safety adaptation actions.    

The security assessment process described herein, can create input for the safety 

reasoning model. Security and safety are both important regarding the dependability 

goal. Combing both security and safety assessment the dependability of a robotic 

system can be achieved.   

3.2 APPLYING SESAME METHODOLOGY  

In this section, we will present how the SESAME security assessment can be applied to 

the use case 2: Disinfecting hospital environments using robotic teams. This is an initial 

approach that serves as proof-of-concept for the applicability of the proposed approach. 

A more complete application of the SESAME security assessment, on all five use cases 

of the project, will be presented in future deliverables such as D5.3 and D5.6 Tools for 

Automated Security Analysis of MRS and for Production of EDDIs, initial and final 

version, respectively.  

As it is already presented in D1.1 Project Requirements, the SESAME use case partner 

Locomotec uses a fully autonomous fleet of robots for disinfection of contact surfaces 

and aerosols using UV-C as a known method to disinfect surfaces.  In order to ensure 

that persons are not over exposed with the maximum daily dose, a person detection 

system is installed. Once a person is detected, the lamps on the UV-C robot turn off. 

The main components of a robot are depicted in below.  
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Figure 12: Main software components of a Robot 

As it can be seen in Figure 12, ROS is used on the robots as the build system and 

communication middleware. Since this is just a test for the applicability of our 

methodology, ROS is going to be used as the initial input from the system 

administrator. If we wanted to perform the security assessment throughout, we should 

have more details about all the deployed software.  

Searching using the keyword ―ROS‖ in the two security knowledge repositories, CVE 

and NVD, 39 different entries come out. However, not all of them are related to the 

actual robot operating system. After the removal of vulnerabilities of other systems, 

such as RuggedCom Rugged Operating System (whose acronym is also ROS), that 

misleadingly appear in the search results, the remaining vulnerabilities are presented in 

Table 1. 

Table 1: Identified ROS-related vulnerabilities in CVE and NVD repositories  

CVE-IDs CWE-IDs CWE Name 

CVE-2016-10681 CWE-300 Channel Accessible by Non-Endpoint 

CVE-2016-10681 CWE-310 Cryptographic Issues 

CVE-2019-13445 CWE-190 Integer Overflow or Wraparound 

CVE-2019-13465 CWE-noinfo NA 

CVE-2019-13566 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buff-
er Overflow') 

CVE-2019-19625 CWE-200 Exposure of Sensitive Information to an Unauthorized 
Actor 

CVE-2019-19627 CWE-200 Exposure of Sensitive Information to an Unauthorized 
Actor 

CVE-2020-10271 CWE-668 Exposure of Resource to Wrong Sphere 

CVE-2020-10272 CWE-306 Missing Authentication for Critical Function 

CVE-2020-10289 CWE-20 Improper Input Validation 

CVE-2020-16124 CWE-190 Integer Overflow or Wraparound 
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As it can be seen, the CVE-IDs along with the corresponding CWE-IDs and the CWE 

names are presented. The identified vulnerabilities (CVE-IDs) are coupled with 

weaknesses (CWE-IDs), such as buffer overflow, missing authentication, exposure of 

sensitive information, etc. Moreover, each of these weaknesses is related to specific 

attack patterns, attacks that an adversary can conduct taking advantage of the said 

weakness. As a result, the defined weaknesses lead to a number of potential attacks, 

presented in Table 2. 

Table 2: Identified ROS-related attack patterns in CAPEC repository 

CWE-IDs CAPEC-IDs CAPEC Name 

CWE-300 CAPEC-466 Leveraging Active Adversary in the Middle Attacks to Bypass 
Same Origin Policy 

 CAPEC-57 Utilizing REST's Trust in the System Resource to Obtain Sen-
sitive Data 

 CAPEC-589 DNS Blocking 

 CAPEC-590 IP Address Blocking 

 CAPEC-612 WiFi MAC Address Tracking 

 CAPEC-613 WiFi SSID Tracking 

 CAPEC-615 Evil Twin Wi-Fi Attack 

 CAPEC-662 Adversary in the Browser (AiTB) 

 CAPEC-94 Adversary in the Middle (AiTM) 

CWE-310 -  

CWE-190 CAPEC-92 Forced Integer Overflow 

CWE-120 CAPEC-10 Buffer Overflow via Environment Variables 

 CAPEC-100 Overflow Buffers 

 CAPEC-14 Client-side Injection-induced Buffer Overflow 

 CAPEC-24 Filter Failure through Buffer Overflow 

 CAPEC-42 MIME Conversion 

 CAPEC-44 Overflow Binary Resource File 

 CAPEC-45 Buffer Overflow via Symbolic Links 

 CAPEC-46 Overflow Variables and Tags 

 CAPEC-47 Buffer Overflow via Parameter Expansion 

 CAPEC-67 String Format Overflow in syslog() 

 CAPEC-8 Buffer Overflow in an API Call 

 CAPEC-9 Buffer Overflow in Local Command-Line Utilities 

 CAPEC-92 Forced Integer Over 

CWE-200 CAPEC-116 Excavation 

 CAPEC-13 Subverting Environment Variable Values 

 CAPEC-169 Footprinting 

 CAPEC-22 Exploiting Trust in Client 

 CAPEC-224 Fingerprinting 

 CAPEC-285 ICMP Echo Request Ping 

 CAPEC-287 TCP SYN Scan 

 CAPEC-290 Enumerate Mail Exchange (MX) Records 

 CAPEC-291 DNS Zone Transfers 

 CAPEC-292 Host Discovery 
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CWE-IDs CAPEC-IDs CAPEC Name 

 CAPEC-293 Traceroute Route Enumeration 

 CAPEC-294 ICMP Address Mask Request 

 CAPEC-295 Timestamp Request 

 CAPEC-296 ICMP Information Request 

 CAPEC-297 TCP ACK Ping 

 CAPEC-298 UDP Ping 

 CAPEC-299 TCP SYN Ping 

 CAPEC-300 Port Scanning 

 CAPEC-301 TCP Connect Scan 

 CAPEC-302 TCP FIN Scan 

 CAPEC-303 TCP Xmas Scan 

 CAPEC-304 TCP Null Scan 

 CAPEC-305 TCP ACK Scan 

 CAPEC-306 TCP Window Scan 

 CAPEC-307 TCP RPC Scan 

 CAPEC-308 UDP Scan 

 CAPEC-309 Network Topology Mapping 

 CAPEC-310 Scanning for Vulnerable Software 

 CAPEC-312 Active OS Fingerprinting 

 CAPEC-313 Passive OS Fingerprinting 

 CAPEC-317 IP ID Sequencing Probe 

 CAPEC-318 IP 'ID' Echoed Byte-Order Probe 

 CAPEC-319 IP (DF) 'Don't Fragment Bit' Echoing Probe 

 CAPEC-320 TCP Timestamp Probe 

 CAPEC-321 TCP Sequence Number Probe 

 CAPEC-322 TCP (ISN) Greatest Common Divisor Probe 

 CAPEC-323 TCP (ISN) Counter Rate Probe 

 CAPEC-324 TCP (ISN) Sequence Predictability Probe 

 CAPEC-325 TCP Congestion Control Flag (ECN) Probe 

 CAPEC-326 TCP Initial Window Size Probe 

 CAPEC-327 TCP Options Probe 

 CAPEC-328 TCP 'RST' Flag Checksum Probe 

 CAPEC-329 ICMP Error Message Quoting Probe 

 CAPEC-330 ICMP Error Message Echoing Integrity Probe 

 CAPEC-472 Browser Fingerprinting 

 CAPEC-497 File Discovery 

 CAPEC-508 Shoulder Surfing 

 CAPEC-573 Process Footprinting 

 CAPEC-574 Services Footprinting 

 CAPEC-575 Account Footprinting 

 CAPEC-576 Group Permission Footprinting 

 CAPEC-577 Owner Footprinting 

 CAPEC-59 Session Credential Falsification through Prediction 

 CAPEC-60 Reusing Session IDs (aka Session Replay) 

 CAPEC-616 Establish Rogue Location 
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CWE-IDs CAPEC-IDs CAPEC Name 

 CAPEC-643 Identify Shared Files/Directories on System 

 CAPEC-646 Peripheral Footprinting 

 CAPEC-651 Eavesdropping 

 CAPEC-79 Using Slashes in Alternate Encoding 

CWE-668 -  

CWE-306 CAPEC-12 Choosing Message Identifier 

 CAPEC-166 Force the System to Reset Values 

 CAPEC-36 Using Unpublished Interfaces 

 CAPEC-62 Cross Site Request Forgery 

CWE-20 CAPEC-10 Buffer Overflow via Environment Variables 

 CAPEC-101 Server Side Include (SSI) Injection 

 CAPEC-104 Cross Zone Scripting 

 CAPEC-108 Command Line Execution through SQL Injection 

 CAPEC-109 Object Relational Mapping Injection 

 CAPEC-110 SQL Injection through SOAP Parameter Tampering 

 CAPEC-120 Double Encoding 

 CAPEC-13 Subverting Environment Variable Values 

 CAPEC-135 Format String Injection 

 CAPEC-136 LDAP Injection 

 CAPEC-14 Client-side Injection-induced Buffer Overflow 

 CAPEC-153 Input Data Manipulation 

 CAPEC-182 Flash Injection 

 CAPEC-209 XSS Using MIME Type Mismatch 

 CAPEC-22 Exploiting Trust in Client 

 CAPEC-23 File Content Injection 

 CAPEC-230 XML Nested Payloads 

 CAPEC-231 Oversized Serialized Data Payloads 

 CAPEC-24 Filter Failure through Buffer Overflow 

 CAPEC-250 XML Injection 

 CAPEC-261 Fuzzing for garnering other adjacent user/sensitive data 

 CAPEC-267 Leverage Alternate Encoding 

 CAPEC-28 Fuzzing 

 CAPEC-3 Using Leading 'Ghost' Character Sequences to Bypass Input 
Filters 

 CAPEC-31 Accessing/Intercepting/Modifying HTTP Cookies 

 CAPEC-42 MIME Conversion 

 CAPEC-43 Exploiting Multiple Input Interpretation Layers 

 CAPEC-45 Buffer Overflow via Symbolic Links 

 CAPEC-46 Overflow Variables and Tags 

 CAPEC-47 Buffer Overflow via Parameter Expansion 

 CAPEC-473 Signature Spoof 

 CAPEC-52 Embedding NULL Bytes 

 CAPEC-53 Postfix, Null Terminate, and Backslash 

 CAPEC-588 DOM-Based XSS 

 CAPEC-63 Cross-Site Scripting (XSS) 
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CWE-IDs CAPEC-IDs CAPEC Name 

 CAPEC-64 Using Slashes and URL Encoding Combined to Bypass Valida-
tion Logic 

 CAPEC-664 Server Side Request Forgery 

 CAPEC-67 String Format Overflow in syslog() 

 CAPEC-7 Blind SQL Injection 

 CAPEC-71 Using Unicode Encoding to Bypass Validation Logic 

 CAPEC-72 URL Encoding 

 CAPEC-73 User-Controlled Filename 

 CAPEC-78 Using Escaped Slashes in Alternate Encoding 

 CAPEC-79 Using Slashes in Alternate Encoding 

 CAPEC-8 Buffer Overflow in an API Call 

 CAPEC-80 Using UTF-8 Encoding to Bypass Validation Logic 

 CAPEC-81 Web Logs Tampering 

 CAPEC-83 XPath Injection 

 CAPEC-85 AJAX Footprinting 

 CAPEC-88 OS Command Injection 

 CAPEC-9 Buffer Overflow in Local Command-Line Utilities 

 

The first column of the table includes the IDs of the weaknesses mentioned in Table 1. 

The other two columns present the IDs and the names of the attack patterns that are 

related to each of the weaknesses. Each of the included attacks are attacks that could be 

conducted to our system. Some of these attacks are more abstract, while others provide 

low level of details. As we described in subsection 2.2.3, attack patterns have different 

types, with meta attack patterns being the most abstract without mentioning used 

technologies or attack implementation, and detailed attack patterns being the most 

specific with information of the attack techniques and the protection mechanisms. This 

attack pattern classification makes the detailed attack patterns more valuable to this 

process, especially for the identification of the mitigations part. Some of the mentioned 

attacks may require the presence of additional technologies, other than just ROS. 

However, since this is an example application of our approach and we do not have the 

full picture of the testing system, we consider all the identified attacks as valid.  

Although each of the attacks included in the table above is a threat for our system on its 

own, some of them can be combined and create more complex attacks. Using the 

CanFollow and CanPrecede relationships between the attack patterns four small graphs 

are created, presented in Figure 13. 
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Figure 13: Combined attack patterns based on the CanFollow and CanPrecede relationships  

These graphs group together attacks that can be conducted in sequence. One attack can 

create the necessary prerequisites for another attack to happen.  

The aforementioned graphs along with the individual identified attacks can be combined 

in larger attack graphs that are created based on attack tree templates, described in 

subsection 3.1.4. Such a tree that combines a subset of the attacks that we spotted based 

on the vulnerabilities of ROS is depicted in Figure 14. 

The tree includes five of the attacks identified in the previous steps of the security 

assessment. If all of them or some of them are conducted, the final goal of the attacker 

will be reached. The final goal of the attacker, regarding this attack tree, is for the target 

robot to crash with a person. Following the opposite direction than the one depicted by 

the arrows, an adversary has to publish to a specific ROS topic, responsible for 

movement of the robot. There are two paths that the attacker can follow to be able to do 

so. This is indicated in the attack tree with the OR node.  

According to the first path, the one depicted in the left side, they can use the ROS CLI 

tool. It can be done if the attacker manages to compromise a robot in the same network 

with the target robot. CAPEC-615 and CAPEC-94 are two attacks that can lead to 

exactly that. CAPEC-615 is the identifier of the Evil Twin Wi-Fi Attack. During such 

an attack, the attacker installs Wi-Fi equipment that acts as a legitimate Wi-Fi network 

access point. As soon as the target node connects, the exchanged traffic is intercepted, 

captured, and analyzed. This attack leads the way for the CAPEC-94 attack. CAPEC-94 

is the identifier for the Adversary in the Middle attack. During such an attack, the 

attacker is placed between two communicating components, observing and possibly 

altering the data before reaching their intended receiver. We should mention here, that 

the presence of the former attack is not necessary for the attacker to accomplish their 

goal. Of course, the latter attack has to be conducted successfully.  

The second path, which is depicted on the right side of the tree, can be materialized if 

the target robot exposes an API. As we already discussed in subsection 2.1, such APIs 

allow for the control of a robot. In this case, the attacker can publish to the topic that 

controls the movement of the target robot by compromising the exposed API. At this 

point the attack tree is once again divided into two paths. According to the first path, the 

CAPEC-8, Buffer Overflow in an API Call, is sufficient for achieving such a goal. 
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During such an attack, the adversary takes advantage of libraries or code vulnerable to 

buffer overflow attacks and targets software that includes them. According to the 

second path, CAPEC-85 and CAPEC-63, conducted in sequence, can have the same 

outcome. CAPEC-85 is the identifier for the AJAX Footprinting attack. The most 

common first step of an attacker is to try to find information about the targeted 

environment to design their attack. Such a process is eased by the frequent 

communication that is taking place during an Ajax conversation. The knowledge that is 

gained is then used for conducting other attacks. CAPEC-63 refers to the Cross-Site 

Scripting attack. During such an attack, an adversary incorporates scripts in content that 

is going to be consumed by a browser, aiming the execution of the said script with the 

target user’s privileges. Once again, CAPEC-63 could be conducted without CAPEC-85 

preceding it. However, the combination of the two is a valid scenario.  

 

Figure 14: Attack tree created by a template attack tree and identified attacks for the Locomotec use 
case 
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The attack tree presented here, manages to combine attacks that were previously 

identified as potential, based on the vulnerabilities of the target system. Among the 

attacks included in the tree we have individual attacks along with one of the simple trees 

that are automatically generated based on the CanFollow and CanPrecede relationships 

of the CAPEC-IDs. 

As it is mentioned in subsection 3.1.6, what follows the creation of the attack trees is the 

transfer of the included information to the run time in the form of security EDDI. At 

runtime security monitoring tools provide their output allowing for the initialization of 

mitigation actions.  

4. CONCLUSIONS 

This deliverable introduces to the reader the problem of performing security assessment 

to robotics systems. What makes it challenging is the fact that robotic systems of today 

operate in a whole new environment, opened to the external world, communicating with 

other systems, devices and services of doubtful confidence, operating in close proximity 

to humans or even interacting with them. Said environment is in contrast with the 

traditional industrial robot environment that used to be closed and trusted.  

What follows is a presentation of the state-of-the-art techniques for security assessment, 

mentioning security assessment approaches that have been conducted on robotic 

systems, and security knowledge repositories that are used from these approaches. 

Among those repositories RVD is mentioned as a dedicated database for robotic-

specific vulnerabilities.  

Based on the above, trying to incorporate the state-of-the-art techniques and tools, the 

SESAME security assessment methodology is introduced. To prove the applicability of 

the proposed methodology, some preliminary outputs of the different methodology 

processes are presented, taking under consideration the Robot Operating System, key 

software for the Locomotec use case. 
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